Citation: | SUN Qingjie, ZHANG Qinghua, ZHAO Yongqing, GUO Jiawei, LI Tianyou, BAN Huakang, HOU Shaojun. Local dry underwater TIG welding process of positioning pin in nuclear power plant[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 7-12. DOI: 10.12073/j.hjxb.20230313003 |
Taking the underwater welding of positioning pin in nuclear power plant as the research object, an underwater TIG welding gun with double-layer gas protection is developed. The motion trajectory is realized by DC motor driving the tungsten pole to rotate around a fixed diameter. The nuclear grade material Z2CN19-10 nitrogen-controlled stainless steel was welded. The weld formation of local dry underwater TIG welding was studied. The process parameters were optimized. The microstructure and mechanical properties of the joint were analyzed by combining the thermal cycle curve and arc shape. The results show that when the inner and outer layers are filled with argon, the weld is well formed and the arc shape is stable. Increasing the welding current or reducing the welding speed increases the weld penetration and the weld width. By comparing the underwater and onshore welded joints, it is found that the rapid cooling of water will promote the ferrite near the fusion line to change from dendritic to lath, reduce the austenite content and refine the grain. The microhardness and mechanical properties of underwater joints are slightly higher than those of onshore joints.
[1] |
Jia C B, Zhang Y, Zhao B, et al. Visual sensing of the physical process during underwater wet FCAW[J]. Welding Journal, 2016, 95(6): 202 − 209.
|
[2] |
马兆炫, 刘一搏, 王建峰, 等. 双相不锈钢水下局部干法TIG焊接工艺[J]. 机械工程学报, 2022, 58(4): 48 − 54. doi: 10.3901/JME.2022.04.048
Ma Zhaoxuan, Liu Yibo, Wang Jianfeng, et al. Underwater local dry tig welding of duplex stainless steel[J]. Journal of Mechanical Engineering, 2022, 58(4): 48 − 54. doi: 10.3901/JME.2022.04.048
|
[3] |
韩雷刚, 钟启明, 陈国栋, 等. 局部干法水下焊接技术的发展[J]. 浙江大学学报, 2019, 53(7): 1252 − 1264.
Han Leigang, Zhong Qiming, Chen Guodong, et al. Development of local dry underwater welding technology[J]. Journal of Zhejiang University, 2019, 53(7): 1252 − 1264.
|
[4] |
沈相星, 程方杰, 邸新杰, 等. 水下局部干法焊接预热技术及专用排水罩的研制[J]. 焊接学报, 2018, 39(3): 112 − 116.
Shen Xiangxing, Fangjie Cheng, Xinjie Di, et al. Local-dry underwater welding preheating technology and development of special drain cover[J]. Transactions of the China Welding Institution, 2018, 39(3): 112 − 116.
|
[5] |
Wang Z M, Xie F X, Feng Y L, et al. Underwater robot local dry welding system[J]. China Welding, 2019, 28(4): 22 − 27.
|
[6] |
Fu Y L, Guo N, Cheng Q, et al. Underwater laser welding for 304 stainless steel with filler wire[J]. Journal of Materials Research and Technology, 2020, 9(6): 15648 − 15661. doi: 10.1016/j.jmrt.2020.11.029
|
[7] |
Liao H P, Li X Y, Chi P, et al. Effect mechanism of arc oscillation on microstructure and mechanical performance of SUS304 weld seams manufactured by local dry underwater double pulsed MIG welding[J]. Materials Science and Engineering, 2023, 887: 145752. doi: 10.1016/j.msea.2023.145752
|
[8] |
Guo N, Fu Y L, Xing X, et al. Underwater local dry cavity laser welding of 304 stainless steel[J]. Journal of Materials Processing Technology, 2018, 260: 146 − 155. doi: 10.1016/j.jmatprotec.2018.05.025
|
[9] |
Han L G, Wu X, Chen G D, et al. Local dry underwater welding of 304 stainless steel based on a microdrain cover[J]. Journal of Materials Processing Technology, 2019, 268: 47 − 53. doi: 10.1016/j.jmatprotec.2018.12.029
|
[10] |
任伟, 吴冰洁, 邱阳, 等. 控氮304不锈钢热变形过程中的动态再结晶行为研究[J]. 西安交通大学学报, 2021, 55(3): 145 − 154.
Ren Wei, Wu Bingjie, Qiu Yang, et al. Dynamic recrystallization behavior of nitrogen-controlled 304 stainless steel in hot deformation[J]. Journal of Xi'an Jiaotong University, 2021, 55(3): 145 − 154.
|
[1] | ZHENG Guangzhen, HAN Hongbiao, WANG Rui, ZHANG Peng. Electrode wobble technology of electro-spark deposition based on orthogonal tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001 |
[2] | LE Jian, LI Fayuan, SHU Zhiheng, ZENG Mingru, ZHANG Hua. Welding current and voltage detection and control method based on visual sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 85-89. DOI: 10.12073/j.hjxb.20240705002 |
[3] | HOU Yujie, HAN Hongbiao, YANG Xin, ZHENG Guangzhen. Development of a closed loop control system for discharge parameters of electric spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 53-59. DOI: 10.12073/j.hjxb.20221122003 |
[4] | LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001 |
[5] | WANG Shun, HAN Hongbiao, LI Shikang, LI Mengnan. Analysis of the influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experiment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 37-43. DOI: 10.12073/j.hjxb.20210131002 |
[6] | HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129 |
[7] | HAN hongbiao, LI Xiangyang. Digital control of capacitance charge-discharge pulse in electro-spark deposition power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 23-26,70. |
[8] | GAO Ying, HAN Jinghua, LOU Liyan, LI Huan. Influence of electrode pressure on Cr12MoV electric-spark depositing YG6 process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 45-48. |
[9] | LI Zhenying, DAI Liping, HOU Ming, HE Qiong. Automatic control of open arc surfacing system for the milling roller[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 82-84. |
[10] | YANG Li-jun, LI Huan, HU Sheng-gang, LI Jun-yue. Pulsed MIG Welding Inverter Power Source by Spectral and Control System[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 41-44. |
1. |
张仁航,李帅贞,汪认,何建英,许骏,孙晓红,冷康龙. 全熔透与部分熔透十字接头疲劳性能对比分析. 金属加工(热加工). 2021(03): 45-48 .
![]() | |
2. |
周松,查涛,黄研清,安金岚,回丽,王磊. 典型高速列车用6N01铝合金焊接接头的微观组织及疲劳性能. 中国有色金属学报. 2021(05): 1253-1260 .
![]() | |
3. |
杜亚芳,王东坡,刘秀国,龚宝明,邓彩艳. T形接头承载角焊缝根部裂纹扩展角度. 焊接学报. 2021(09): 21-27+98 .
![]() | |
4. |
张军,张凤梅,周韶泽. 惯性载荷作用下结构应力法焊接结构抗疲劳性能研究. 大连交通大学学报. 2019(01): 40-45 .
![]() | |
5. |
王苹,米莉艳,于谊飞,董平沙. 7N01铝合金十字接头抗疲劳设计. 焊接学报. 2019(10): 20-24+161-162 .
![]() |