Citation: | ZHANG Chao, ZHOU Mengbing, CUI Lei, TAO Xin, WANG Jun, WANG Wei, LIU Yongchang. Microstructure and impact properties for friction stir welds of 9Cr-1.5W-0.15Ta heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 36-42. DOI: 10.12073/j.hjxb.20230423002 |
In this paper, the microstructure evolution and impact properties of friction stir welds of 9Cr-1.5W-0.15Ta heat resistant steel were studied. The results showed that due to the double effects of the mechanical stirring of the stir tool and the welding thermal cycle, grain breaking, fully austenitized dynamic recrystallization, dissolution of M23C6 phase at the grain boundaries and formation of M3C are materialized in the welds. Higher cooling rate after welding restrains the growth of grains, and promotes martensite transformation. The impact test was conducted in the temperature range of −100 ~ 20 ℃. With the increase of impact test temperature, the impact absorbing energy of base metal and FSW weld metal is monotonously increased, and the impact fracture mode changes from brittle fracture to ductile fracture. Due to the formation of lath martensite and the precipitation of "acicular" M3C carbide in FSW weld, the hardness of FSW weld increases significantly. At the same temperature, the impact toughness of FSW weld decreases. And, the ductile-brittle transition temperature of FSW weld increases from −50 ℃ of the base metal to −40.2 ℃.
[1] |
Byun T S, Yoon J H, Hoelzer D T, et al. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness[J]. Journal of Nuclear Materials, 2014, 449: 290 − 299. doi: 10.1016/j.jnucmat.2013.10.007
|
[2] |
李萍, 丁方强, 薛可敏. 低活化马氏体钢真空扩散焊接工艺[J]. 焊接学报, 2018, 39(1): 93 − 96.
Li Ping, Ding Fangqiang, Xue Kemin. Vacuum diffusion welding process of low activation martensite steel[J]. Transactions of the China Welding Institution, 2018, 39(1): 93 − 96.
|
[3] |
周军, 邱绍宇, 邱日盛, 等. Si含量对9%Cr铁素体马氏体钢Laves相析出行为和冲击性能的影响[J]. 材料热处理学报, 2022, 43(5): 116 − 123.
Zhou Jun, Qiu Shaoyu, Qiu Risheng, et al. Effect of Si content on laves phase precipitation behavior and impact properties of 9% Cr ferritic martensitic steel[J]. Journal of Material Heat Treatment, 2022, 43(5): 116 − 123.
|
[4] |
Dudko V, Belyakov A, Kaibyshev R. Origin of threshold stresses in a P92-type steel[J]. Transactions of the Indian Institute of Metals, 2016, 69: 223 − 227. doi: 10.1007/s12666-015-0757-8
|
[5] |
Chatterjee A, Moitra A, Bhaduri A K, et al. Dynamic fracture behaviour of thermo-mechanically processed modified 9Cr-1Mo steel[J]. Engineering Fracture Mechanics, 2016, 149: 74 − 88.
|
[6] |
唐文珅, 杨新岐, 李胜利, 等. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115 − 121.
Tang Wenshen, Yang Xinqi, Li Shengli, et al. Effect of welding parameters on microstructure and properties of friction stir welded joints of ferritic stainless steel[J]. Journal of Materials Engineering, 2019, 47(5): 115 − 121.
|
[7] |
邓运来, 邓舒浩, 叶凌英, 等. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131 − 138.
Deng Yunlai, Deng Shuhao, Ye Lingying, et al. Effect of post weld heat treatment on microstructure and mechanical properties of AA7204-T4 aluminum alloy friction stir welded joint[J]. Journal of Materials Engineering, 2020, 48(4): 131 − 138.
|
[8] |
宋婕, 常英珂, 吴瑞德, 等. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 4: 164 − 168.
Song Jie, Chang Yingke, Wu Ruide, et al. Ductile brittle transition and embrittlement mechanism of 13Cr11Ni2W2MoV martensitic heat strength stainless steel[J]. Materials Review, 2022, 4: 164 − 168.
|
[9] |
Zhang Chao, Cui Lei, Wang Dongpo, et al. Effect of microstructures to tensile and impact properties of stir zone on 9%Cr reduced activation ferritic/martensitic steel friction stir welds[J]. Materials Science and Engineering A, 2018, 729: 257 − 267. doi: 10.1016/j.msea.2018.05.043
|
[10] |
Tavassoli A A F, Diegele E, Lindau R, et al. Current status and recent research achievements in ferritic/martensitic steels[J]. Journal of Nuclear Materials, 2014, 455: 269 − 276. doi: 10.1016/j.jnucmat.2014.06.017
|
[11] |
Zhang C, Cui L, Liu Y, et al. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel[J]. Journal of Materials Science & Technology, 2018, 34: 756 − 766.
|
[12] |
Chatterjee A, Chakrabarti D, Moitra A, et al. Effect of normalization temperatures on ductile-brittle transition temperature of a modified 9Cr-1Mo steel[J]. Materials Science & Engineering A, 2014, 618: 219 − 231.
|
[13] |
Zhao M, Zeng T, Li J, et al. Identification of the effective grain size responsible for the ductile to brittle transition temperature for steel with an ultrafine grain size ferrite/cementite microstructure with a bimodal ferrite grain size distribution[J]. Materials Science & Engineering A, 2011, 528: 4217 − 4221.
|
[14] |
Chatterjee A, Chakrabarti D, Moitra A, et al. Effect of deformation temperature on the ductile–brittle transition behavior of a modified 9Cr–1Mo steel[J]. Materials Science and Engineering A, 2015, 630: 58 − 70. doi: 10.1016/j.msea.2015.01.076
|
[15] |
Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2016, 478: 1 − 6. doi: 10.1016/j.jnucmat.2016.05.028
|
[16] |
Sawada K, Hara T, Tabuchi M, et al. Microstructure characterization of heat affected zone after welding in Mod. 9Cr–1Mo steel[J]. Materials Characterization, 2015, 101: 106 − 113. doi: 10.1016/j.matchar.2015.01.013
|
[17] |
Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties[J]. Materials Science and Engineering:A, 2016, 664: 58 − 74. doi: 10.1016/j.msea.2016.03.132
|
[18] |
American Society of Testing Materials. Standard methods for notch bar impact testing of metallic materials: ASTM E23 [S]. West Conshohocken, Pa: ASTM International, 2013.
|
[19] |
Zhang J C, Di H S, Deng Y G, et al. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel[J]. Materials Science and Engineering A, 2015, 627: 230 − 240. doi: 10.1016/j.msea.2015.01.006
|
[20] |
赵洋洋, 林可欣, 王颖, 等. 基于位错模型的增材制造构件疲劳裂纹萌生行为[J]. 焊接学报, 2023, 44(7): 1 − 8.
Zhao Yangyang, Lin Kexin, Wang Ying, et al. Fatigue crack initiation behavior of additive manufacturing components based on dislocation model[J]. Transactions of the China Welding Institution, 2023, 44(7): 1 − 8.
|
[21] |
田成川, 赵海, 田妮, 等. 长期服役对P91钢蒸汽管道接头疲劳裂纹扩展行为的影响[J]. 材料与冶金学报, 2023, 22(6): 588 − 594.
Tian Chengchuan, Zhao Hai, Tian Ni, et al. Effect of long-term service on fatigue crack propagation behavior of P91 steel steam pipe joint[J]. Journal of Materials and Metallurgy, 2023, 22(6): 588 − 594.
|
[1] | HAN Mei, ZHANG Xi, MA Qingjun, WEI Yushun, WEI Chen, WANG Zejun, JIA Yunhai. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 47-53. DOI: 10.12073/j.hjxb.20230301001 |
[2] | CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003 |
[3] | SU Xiaohu, LI Zhuoxin, LI Hong, JinKim Hee, MENG Bo. Microstructure to properties of coarse grained heat affected zone in deposited weld metal of metal cored wire E120C-K4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 48-53. DOI: 10.12073/j.hjxb.2019400262 |
[4] | ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106. |
[5] | HU Meijuan, WANG Peng, HAN Xinli, JI Lingkang. Microstructure and properties of coarse grain region for high-strain pipeline X80 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 93-96. |
[6] | CHAI Feng, SU Hang, YANG Caifu, LUO Xiaobing. Coarse grained region microstructure and properties of high heat input welding DH36 steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 25-28. |
[7] | ZHANG Yingqiao, ZHANG Hanqian, LIU Weiming. Effects of M-A constituent on toughness of coarse grain heat-affected zone in HSLA steels for oil tanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 109-112. |
[8] | WU Wei, GAO Hongming, WU Lin. Microstructures in CGHAZ and mechanical properties of welded joint during welding of fine grain titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 61-64. |
[9] | CHAI Feng, YANG Cai-fu, ZHANG Yong-quan, SU Hang, XU Zhou. Coarse-grained heat affected zone microstructure and toughness of copper-bearing age-hardening steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 56-60. |
[10] | Wu Zhantian, Guo Jiuzhu, Zhou Zhenhua, Zhu Hong, Wang Xiaoyu. Structure and property of coarse-grained zone in weld of a high strength low alloy 20Mn2WNbB steel studied by thermal simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (1): 40-44. |
1. |
马晓锋,夏攀,刘海生,史铁林,王中任. 全位置焊接熔池的深度学习检测方法. 机械工程学报. 2023(12): 272-283 .
![]() |