Advanced Search
PAN Jiajing, HE Xixin, ZHAO Pengcheng, HU Yiteng, LIANG Ying. Numerical analysis of weld pool fluctuation behavior induced by droplet transfer in twin-wire GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 90-96. DOI: 10.12073/j.hjxb.20200131001
Citation: PAN Jiajing, HE Xixin, ZHAO Pengcheng, HU Yiteng, LIANG Ying. Numerical analysis of weld pool fluctuation behavior induced by droplet transfer in twin-wire GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 90-96. DOI: 10.12073/j.hjxb.20200131001

Numerical analysis of weld pool fluctuation behavior induced by droplet transfer in twin-wire GMAW

More Information
  • Received Date: January 30, 2020
  • Available Online: November 05, 2020
  • The dynamic fluctuation behavior of the free surface of molten pool during pulsed twin wire GMAW was studied. Based on the two-dimensional wave theory, the transient mathematical model of the shock vibration of molten pool surface and the two-dimensional wave behavior resulting from it are established. The governing differential equation is derived. The corresponding initial and boundary conditions are given, and the numerical analysis is carried out by programming. The displacement and vibration velocity distribution of the free surface of the molten pool, the instantaneous fluctuation of the free surface of the molten pool under different droplet transition conditions and the interference caused by the surface fluctuation during welding are obtained. The results show that the surface wave mainly originates near the center of the front wire and the back wire, resulting in a strong depression on the surface of the molten pool. The welding wire with diameter of 1.0 mm can reduce the surface fluctuation of molten pool and prevent the occurrence of coarse weld ripple; When the droplet transfer frequency is 1 000 Hz, defects such as rough welding ripple and undercut are easy to appear. The fluctuation interference decreases with the decrease of droplet transfer frequency. The work in this paper can provide basic data and theoretical guidance for the industrial production of pulsed twin wire GMAW and the optimization of welding parameters.
  • 李芳, 华学明, 吴毅雄. 脉冲熔化极气体保护焊研究现状与发展[J]. 热加工工艺, 2007, 36(15): 84 − 87.

    Li Fang, Hua Xueming, Wu Yixiong. Research status and development of pulse fusion electrode gas shielded welding[J]. Hot Working Technology, 2007, 36(15): 84 − 87.
    王振民, 赵朋成, 薛家祥. 双丝GMAW熔滴过渡对焊缝形状的影响[J]. 华南理工大学学报(自然科学版), 2008(8): 96 − 101.

    Wang Zhenmin, Zhao Pengcheng, Xue Jiaxiang. Influence of GMAW droplet transition on weld shape[J]. Journal of South China University of Technology (Natural Science Edition), 2008(8): 96 − 101.
    陈东升, 陈茂爱, 武传松. 脉冲电流相位差对双丝P-GMAW焊电弧稳定性及焊缝成形的影响[J]. 焊接学报, 2016, 37(4): 123 − 127.

    Chen Dongsheng, Chen Maoai, Wu Chuansong. Effect of phase difference on arc stability and weld quality of tandem P-GMAW[J]. Transactions of the China Welding Institution, 2016, 37(4): 123 − 127.
    肖磊, 樊丁, 郑发磊. 大电流GMAW的熔滴过渡行为及控制[J]. 华南理工大学学报(自然科学版), 2019(4): 127 − 131.

    Xiao Lei, Fan Ding, Zheng Falei. Droplet transition behavior and control of high current GMAW[J]. Journal of South China University of Technology (Natural Science Edition), 2019(4): 127 − 131.
    王莹, 吕小青, 荆洪阳. 基于GMAW动态模型的短路过渡过程稳定性分析[J]. 焊接学报, 2016, 37(8): 21 − 25.

    Wang Ying, Lü Xiaoqing, Jing Hongyang. Stability analysis of short circuit transition process based on GMAW dynamic model[J]. Transactions of the China Welding Institution, 2016, 37(8): 21 − 25.
    张世亮, 胥国祥, 曹庆南. 基于FLUENT软件的GMAW焊熔池动态行为数值分析模型[J]. 焊接学报, 2018, 39(2): 75 − 79.

    Zhang Shiliang, Xu Guoxiang, Cao Qingnan. Numerical analysis model of GMAW welding pool dynamic behavior based on FLUENT software[J]. Transactions of the China Welding Institution, 2018, 39(2): 75 − 79.
    Lü Xiaoqing, Zhang Peng, Shen Jun. Analysis of weld pool vibration characteristics in pulsed gas metal arc welding[J]. China Welding, 2019, 28(4): 28 − 32.
    吴东升, 华学明, 叶定剑. 高速GMAW驼峰形成过程的数值分析[J]. 焊接学报, 2016, 37(10): 5 − 8.

    Wu Dongsheng, Hua Xueming, Ye Dingjian. Numerical analysis of humping formation in high speed GMAW process[J]. Transactions of the China Welding Institution, 2016, 37(10): 5 − 8.
    Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part I: the arc[J]. International Journal of Heat Mass Transfer, 2006, 50(5): 833 − 846.
    Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part II: the metal[J]. International Journal of Heat Mass Transfer, 2006, 50(5): 808 − 820.
    Lu F, Wang H P, Murphy A B, et al. Analysis of energy flow in gas metal arc welding processes through self-consistent three-dimensional process simulation[J]. International Journal of Heat Mass Transfer, 2014, 68(6): 215 − 223.
    于露, 李桓, 杨立军. 双丝脉冲MAG焊的熔滴过渡及工艺特征[J]. 焊接学报, 2012, 33(16): 25 − 28.

    Yu Lu, Li Huan, Yang Lijun. Metal droplet transfer and welding processing characteristics of double-wire pulse MAG welding[J]. Transactions of the China Welding Institution, 2012, 33(16): 25 − 28.
    Tušek J. Mathematical modeling of melting rate in twin-wire welding[J]. Journal of Materials Processing and Technology, 2000, 100(6): 250 − 256.
    吴东升, 华学明, 叶定剑. 双丝共熔池熔化极气体保护焊熔池流动的数值模拟[J]. 上海交通大学学报, 2015, 49(10): 1435 − 1440.

    Wu Dongsheng, Hua Xueming, Ye Dingjian. Numerical simulation of flow of gas shielded welding pool in double wire eutectic pool[J]. Journal of Shanghai Jiao Tong University, 2015, 49(10): 1435 − 1440.
    梁瑛. 脉冲双丝GMAW熔池自由表面受迫振动的数值分析[D]. 青岛: 青岛科技大学, 2012.

    Liang Ying. Numerical analysis of forced vibration on free surface of pulsed double wire GMAW bath[D]. Qingdao: Qingdao University of Science and Technology, 2012.
    Hu J, Guo H, Tsai H L. Weld pool dynamics and the formation of ripples in 3D gas metal arc welding[J]. International Journal of Heat and Mass Transfer, 2008, 51(9): 2537 − 2552.
  • Related Articles

    [1]CAO Runping, HAN Yongquan, LIU Xiaohu, HONG Haitao, HAN Jiao. Effect of rare earth Ce on arc and droplet transfer behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 95-102. DOI: 10.12073/j.hjxb.20231109001
    [2]WANG Ziran, ZHANG Shanbao, YANG Zhanli, YANG Yicheng. Influence of gap on droplet transition of GMAW vertical welding and characteristics of temperature field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 89-94. DOI: 10.12073/j.hjxb.2019400133
    [3]MING Zhu<sup>1,2</sup>, WANG Kehong<sup>1</sup>, WANG wei<sup>2</sup>, FAN Chenglei<sup>3</sup>, WANG Youqi<sup>2</sup>, FENG Shengqiang<sup>2</sup>. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 24-28. DOI: 10.12073/j.hjxb.2018390168
    [4]ZHOU Xiaochen1, LI Huan1, SONG Chunguang2, ZHANG Yuchang3. Study on characteristics of droplet transfer for pulsed TOPTIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 45-48. DOI: 10.12073/j.hjxb.20150609001
    [5]CHEN Shujun, ZHANG Suolai, HUANG Ning, LIU Yan, WANG Guanghui. Droplet transfer of arcing-wire pulse GTAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 17-21.
    [6]LV Xiaoqing, SHEN Jun, LI Huan, LIU Yongqiang. Droplet transfer analysis in pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 39-42.
    [7]YU Lu, LI Huan, YANG Lijun, WEI Huiliang, GAO Ying. Metal droplet transfer and welding processing characteristics of double-wire pulse MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 25-28.
    [8]XIE Shengmian, WU Kaiyuan, WEN Yuanmei, GE Weiqing, HUANG Shisheng. Effects of pulse frequency on TCGMAW droplet transfer modes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 69-72.
    [9]WU Yanming, WANG Wei, LIN Shangyang, WANG Xuyou. Analysis of droplet behavior in Nd:YAG laser-pulsed MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 83-86,112.
    [10]Wang Bao, Lu Wenxiong. Analysis of droplet transformation forms of electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (1): 1-6.
  • Cited by

    Periodical cited type(14)

    1. 陈文杰,纪冬梅. 反应堆压力容器接管安全端焊接残余应力模拟及其焊接参数优化研究. 精密成形工程. 2024(02): 108-116 .
    2. 王申,王栋,冯涛,杨香,汪思鹏,魏志宏. A105锻钢球阀激光深熔焊接工艺优化及组织性能研究. 电焊机. 2024(03): 89-98 .
    3. 石开荣,李浩江,姜正荣. 考虑焊接影响的既有钢框架结构抽柱改造施工过程模拟与监测. 施工技术(中英文). 2024(23): 103-109 .
    4. 陈文刚. 白车身典型接头点焊焊接变形仿真及研究. 汽车工艺与材料. 2023(03): 24-29 .
    5. 钟军. 焊接工艺参数优化对焊缝收缩量影响研究. 焊接技术. 2023(09): 54-58+146 .
    6. 吴斌,肖轶男,毛迪. 涡轮增压器叶轮参数设计. 机械制造. 2023(10): 19-22 .
    7. 陈士忠,白云飞,刘子金,汶浩. 焊接参数对钢筋骨架主筋力学性能影响. 沈阳建筑大学学报(自然科学版). 2021(05): 935-941 .
    8. 陈树君,董海洋,张海沧,闫朝阳. 铝合金T形接头双侧脉冲MIG单道焊接工艺. 焊接. 2021(08): 1-6+28+62 .
    9. 李钧正,韩志杰,陈红卫. 60N规格U75V钢轨矫直工艺数值仿真分析及工艺实践. 河南冶金. 2021(05): 31-35 .
    10. 李杰,周鹏,惠媛媛. 两种常见焊接接头的机器人焊接工艺. 焊接. 2020(06): 51-56+64 .
    11. 任书文,陈士忠,刘子金,夏忠贤,侯爱山,王永华. 钢筋骨架焊接工艺参数的优化研究. 建筑机械化. 2020(11): 98-101 .
    12. 曹海涛,张鹏,杜云慧,李鸿武,王玉洁,苏丽洁. Mg-Gd-Y-Zr激光焊接工艺优化及高温力学性能. 焊接学报. 2020(10): 87-96+102 . 本站查看
    13. 薛玉,邱望标,郭天水,李莉娅. 基于有限元法的管廊模具侧模焊接参数优化. 热加工工艺. 2019(19): 146-150 .
    14. 贺颂. U78CrV钢轨移动式闪光焊接工艺优化. 焊接. 2018(12): 51-54+68 .

    Other cited types(13)

Catalog

    Article views (831) PDF downloads (33) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return