Citation: | WANG Ying, GAO Sheng. Identification method of GTAW welding penetration state based on improved CeiT[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 26-35, 42. DOI: 10.12073/j.hjxb.20230327002 |
Aiming at the problems of high similarity between melt pool information and background, much noise, poor real-time prediction and low recognition accuracy, a GTAW welding fusion state recognition method based on improved CeiT network model is proposed. First, the Image-to-Tokens module is lightened and improved by MobileNetV3 to enhance the real-time performance of prediction; second, the DGCA module is designed to improve the LeFF module to enhance the remote dependencies among features and enrich the categorical information contained in the class labels; and lastly, the fusion of the underlying features and the high-level semantic features in the LeFF module improves the model's ability to represent the features of the melt pool. Simulation experiments show that the proposed model obtains higher accuracy and faster detection speed compared with MobileNetV3, ResNet50, ShuffleNetV2, DeiT, and CeiT models.
[1] |
Wang Y M, Han J, Lu J, et al. TIG stainless steel molten pool contour detection and weld width prediction based on res-seg[J]. Metals-Open Access Metallurgy Journal, 2020, 10(11): 1495.
|
[2] |
Jiao W, Wang Q, Cheng Y, et al. Prediction of weld penetration using dynamic weld pool arc images[J]. Welding Journal, 2020, 99(11): 295s − 302s. doi: 10.29391/2020.99.027
|
[3] |
Kim H, Nam K, Oh S, et al. Deep-learning-based real-time monitoring of full-penetration laser keyhole welding by using the synchronized coaxial observation method[J]. Journal of Manufacturing Processes, 2021, 68(8): 1018 − 1030.
|
[4] |
Wu J Z, Shi J W, Gao Y F, et al. Penetration recognition in GTAW welding based on time and spectrum images of arc sound using deep learning method[J]. Metals, 2022, 12(9): 1549. doi: 10.3390/met12091549
|
[5] |
Ma G H, Yu L S, Yuan H T, et al. A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network[J]. Journal of Manufacturing Processes, 2021, 64: 130 − 139. doi: 10.1016/j.jmapro.2020.12.067
|
[6] |
Chang B X, Huang J Y. Discrimination of molten pool penetration based on genetic algorithm optimization of BP neural network[J]. Journal of Physics Conference Series, 2020, 1437: 012110. doi: 10.1088/1742-6596/1437/1/012110
|
[7] |
陈宸, 周方正, 李成龙, 等. 融合空间和通道特征的等离子弧焊熔池熔透状态预测方法[J]. 焊接学报, 2023, 44(4): 30 − 38. doi: 10.12073/j.hjxb.20220516001
Chen Chen, Zhou Fangzheng, Li Chenglong, et al. Prediction method of plasma arc welding molten pool melting state based on spatial and channel characteristics[J]. Transactions of the China Welding Institution, 2023, 44(4): 30 − 38. doi: 10.12073/j.hjxb.20220516001
|
[8] |
王颖, 高胜, 吴立明. 基于胶囊网络的TIG熔透预测[J]. 焊接, 2023(4): 15 − 20,28. doi: 10.12073/j.hj.20220425003
Wang Ying, Gao Sheng, Wu Liming. TIG penetration prediction based on capsule network[J]. Welding & Joining, 2023(4): 15 − 20,28. doi: 10.12073/j.hj.20220425003
|
[9] |
Gao Y F, Wang Q S, Xiao J H, et al. Weld penetration identification with deep learning method based on auditory spectrum images of arc sounds[J]. Welding in the World, 2022, 66(12): 2509 − 2520. doi: 10.1007/s40194-022-01373-7
|
[10] |
Yu R W, He H Y, Han J, et al. Monitoring of back bead penetration based on temperature sensing and deep learning[J]. Measurement, 2022, 188. DOI: 10.1016/J.MEASUREMENT.2021.110410.
|
[11] |
段明瑞. 基于深度学习的乏燃料池不锈钢GTAW焊接质量在线监测[D]. 哈尔滨: 哈尔滨工业大学, 2021.
Duan Mingrui. On-line monitoring of welding quality of stainless steel GTAW in spent fuel pool based on deep learning [D]. Harbin : Harbin Institute of Technology, 2021.
|
[12] |
Liu S K , Wu D, Luo Z Y , et al. Measurement of pulsed laser welding penetration based on keyhole dynamics and deep learning approach[J]. Measurement, 2022, 199. DOI:10.1016/J. MEASUREMENT.2022.111579.
|
[13] |
Nomura K, Fukushima K, Matsumura T, et al. Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation[J]. Journal of Manufacturing Processes, 2020. DOI: 10.1016/j.jmapro.2020.10.019.
|
[14] |
Xia C Y, Pan Z X, Fei Z Y, et al. Vision based defects detection for Keyhole TIG welding using deep learning with visual explanation[J]. Journal of Manufacturing Processes, 2020, 56(8): 845 − 855.
|
[15] |
刘天元, 鲍劲松, 汪俊亮, 等. 融合时序信息的激光焊接熔透状态识别方法[J]. 中国激光, 2021, 48(6): 228 − 238.
Liu Tianyuan, Bao Jinsong, Wang Junliang, et al. Laser welding penetration state recognition method fused with timing information[J]. Chinese Journal of Lasers, 2021, 48(6): 228 − 238.
|
[16] |
卢振洋, 宫兆辉, 闫志鸿, 等. 基于深度学习的TIG焊背部熔池检测和熔宽提取[J]. 北京工业大学学报, 2020, 46(9): 988 − 996. doi: 10.11936/bjutxb2018110030
Lu Zhenyang, Gong Zhaohui, Yan Zhihong, et al. Deep learning based detection and width extraction of back molten pool in TIG welding[J]. Journal of Beijing University of Technology, 2020, 46(9): 988 − 996. doi: 10.11936/bjutxb2018110030
|
[17] |
Wang Z M, Li L Y, Chen H Y, et al. Recognition of GTAW weld penetration based on the lightweight model and transfer learning[J]. Welding in the World, 2022, 67(1): 251 − 264.
|
[18] |
Li C, Wang Q, Jiao W, et al. Deep learning-based detection of penetration from weld pool reflection images[J]. Welding Journal, 2020, 99(9): 239s − 245s. doi: 10.29391/2020.99.022
|
[19] |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10012 − 10022.
|
[20] |
Liang S J, Yu M X, Lu W S, et al. A lightweight vision transformer with symmetric modules for vision tasks[J]. Intelligent Data Analysis, 2023, 27(6): 1741 − 1757. doi: 10.3233/IDA-227205
|
[21] |
Yuan K, Guo S, Liu Z, et al. Incorporating convolution designs into visual transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 559 − 568.
|
[22] |
Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
|
[1] | JIANG Fan, FANG Shitong, ZHANG Guokai, CHEN Shujun, LI Tianming, XU Bin. Front-side monitoring technology for back-side keyhole state in VPPAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 8-14. DOI: 10.12073/j.hjxb.20231107002 |
[2] | XIN Jianwen, WU Dongsheng, LI Fang, ZHANG Yuelong, WUANG Huan, HUA Xueming. Formation mechanism of elongated cavities in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003 |
[3] | DENG Lipeng, KE Liming, LIU Jinhe. Essence of the technology of filling keyhole based on resistance welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 50-53. DOI: 10.12073/j.hjxb.20190708005 |
[4] | HAN Xiaohui, MA Yin, MA Guolong, YANG Haifeng, XU Liang. Dynamic characteristic analysis of keyhole in double beam laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 93-96. DOI: 10.12073/j.hzxb.20190811002 |
[5] | LI Bin, ZHAO Zeyang, WANG Chunming, HU Xiyuan, GUO Lian. Behaviors of plasma and keyhole in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 87-91. |
[6] | CHEN Minghua, LI Chenbin, LIU Liming. Coupling behavior of plasmas during laser-arc hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 53-56. |
[7] | HUANG Yongxian, HAN Bing, LÜ Shixiong, FENG Jicai, LENG Jinsong, CHEN Xiaobo. Filling friction stir welding for repairing keyhole based on principle of solid state joining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 5-8. |
[8] | WANG Renping, LEI Yongping, SHI Yaowu. Numerical simulation of keyhole formation process in laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 38-40. |
[9] | YIN Feng-liang, HU Sheng-sun, ZHENG Zhen-tai, ZHU Yu-xin. Stability control of keyhole in keyhole plasma welding using plasma spring[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 21-24. |
[10] | ZHOU Qi, LIU Fang-jun. The Review on the Keyhole Dynamics of the Electron Beam Deep Penetration Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 88-92. |