Advanced Search
DENG Lipeng, KE Liming, LIU Jinhe. Essence of the technology of filling keyhole based on resistance welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 50-53. DOI: 10.12073/j.hjxb.20190708005
Citation: DENG Lipeng, KE Liming, LIU Jinhe. Essence of the technology of filling keyhole based on resistance welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 50-53. DOI: 10.12073/j.hjxb.20190708005

Essence of the technology of filling keyhole based on resistance welding

More Information
  • Received Date: July 07, 2019
  • Available Online: July 12, 2020
  • The technology of filling keyhole based on resistance welding (FKBRW) is a new filling technology for friction stir welding (FSW) keyhole, which can not only achieve the purpose of removing the keyhole but also has a positive effect on the load bearing capacity of the FSW joint. For studying the mechanism of FKBRW, the keyholes of 2024-T4 aluminum alloy friction stir spot welding of 1.5 mm + 1.5 mm were filled on a three-phase secondary rectification resistance spot welding machine for test equipment, and a device monitoring the filling force dynamic behavior was built up. The results showed that there exits two boding forms between the plug and wall of keyhole. The melting connection zone is in the middle of the joints, and the solid phase connection zone is on the both upper and bottom of the joints.The FKBRW technology is a kind of composite welding process that the filling force from upper electrode presses the plug into the keyhole, and the plug goes through the process of softening and pushing and metallurgical combines fully with the wall of keyhole in the last time.
  • Deng L P, Li S H, Ke L M, et al. Microstructure and fracture behavior of refill friction stir spot welded joints of AA2024 using a novel refill technique[J]. Metals, 2019, 9(3): 286. doi: 10.3390/met9030286
    Deng L P, Ke L M, Liu J H. Filling technique for keyhole of friction stir spot welding based on the principles of resistance spot welding[J]. China Welding, 2019(3): 1 − 8.
    邓黎鹏, 柯黎明, 刘金合. 基于压焊原理的搅拌摩擦焊匙孔填补技术[J]. 焊接学报, 2019, 40(6): 107 − 111.

    Deng Lipeng, Ke Liming, Liu Jinhe. A key-hole filling technology for friction stir welding based on the theory of pressure welding[J]. Transactions of the China Welding Institution, 2019, 40(6): 107 − 111.
    黄永宪, 韩冰, 吕世雄, 等. 基于固态连接原理的填充式搅拌摩擦焊匙孔修复技术[J]. 焊接学报, 2012, 33(3): 5 − 8.

    Huang Yongxian, Han Bing, Lü Shixiong, et al. Filling friction stir welding for repairing keyhole based on principle of solid state joining[J]. Transactions of the China Welding Institution, 2012, 33(3): 5 − 8.
    Huang Y, Han B, Tian Y, et al. New technique of filling friction stir welding[J]. Science and Technology of Welding and Joining, 2011, 16: 497 − 501. doi: 10.1179/1362171811Y.0000000032
    Han B, Huang Y X, Lü S X, et al. AA7075 bit for repairing AA2219 keyhole by filling friction stir welding[J]. Materials & Design, 2013, 51(10): 25 − 33.
    Zhou L, Liu D, Nakata K, et al. New technique of self-refilling friction stir welding to repair keyhole[J]. Science and Technology of Welding and Joining, 2012, 17(8): 649 − 655.
    Zhang G F, Jiao W M, Zhang J X. Filling friction stir weld keyhole using pin free tool and T shaped filler bit[J]. Science and Technology of Welding and Joining, 2014, 19(2): 98 − 104.
    Martin R, Thomas G, Uceu S, et al. Keyhole closure using friction spot welding in aluminium alloy 6061-T6[J]. Journal of Materials Processing Technology, 2016, 237(11): 12 − 18.
    Li W Y, Lin J F, Zhang Z H, et al. Improving mechanical properties of pinless friction stir spot welded joints by eliminating hook defect[J]. Materials & Design, 2014, 62(10): 247 − 254.
    Chu Q, Li W Y, Yang X W, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy[J]. Journal of Materials Science & Technology, 2018, 34(10): 1739 − 1746.
    Chu Q, Li W Y, Yang X W, et al. Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy[J]. Journal of Materials Processing Technology, 2018, 252(2): 69 − 80.
    Hynes N R, Abeyram M N. Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite[J]. International Conference on Condensed Matter and Applied Physics, 2016, 1728(1): 178 − 186.
    Metz D F, Barkey M E. Fatigue behavior of friction plug welds in 2195 Al-Li alloy[J]. International Journal of Fatigue, 2012, 43(10): 178 − 187.
    王国庆, 赵刚, 郝云飞, 等. 2219铝合金搅拌摩擦焊缝匙孔缺陷修补技术[J]. 宇航材料工艺, 2012, 42(3): 24 − 28.

    Wang Guoqing, Zhao Gang, Hao Yunfei, et al. Technology for repairing keyhole defect for FSW joint of 2219 aluminum alloy[J]. Aerospace Material and Technology, 2012, 42(3): 24 − 28.
  • Related Articles

    [1]WANG Zhen, CHENG Fangjie, ZHANG Yanshen, SHAO Zhujing, WANG Dongpo. Effect of misalignment on fatigue performance of horizontal welded joints in steel catenary riser system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 123-127. DOI: 10.12073/j.hjxb.2019400084
    [2]YANG Song, YANG Yuanming. U-tube local damage analysis and preventable method for AP1000 steam generator during local post weld heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 90-94.
    [3]XIE Hongwei, KUANG Yongcong, OUYANG Gaofei, ZHANG Xianmin. Solder joint inspection method regarding misalignment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 30-34.
    [4]DAI Wei, XUE Songbai, ZHANG Liang, JI Feng. Reliability analysis of PBGA soldered joints based on Taguchi method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 81-84.
    [5]DAI Wei, XUE Songbai, ZHANG Liang, SHENG Zhong. Analysis on soldered joint reliability of PBGA package with different arrangement models[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 73-76.
    [6]LIU Xi. Fatigue reliability evaluation for welding construction containing welding defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 89-92,96.
    [7]LIN Guoxiang, YE Jinbao, QIU Changjun. Calculating method of reliability on anti fatigue fracture of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 50-52.
    [8]ZHANG Liang, XUE Songbai, LU Fangyan, HAN Zongjie. Finite element analysis on soldered joint reliability of QFP device with different solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 45-48, 52.
    [9]LIU Xiaokang, YANG Shengwen, JANG Chuanwen. Joint optimization and its reliability analysis of hand disk magnetic head[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 83-87.
    [10]WU Yu-xiu, XUE Song-bai, HU Yong-Fang. Finite element analysis on reliability of soldered joint of J-lead[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 85-88.
  • Cited by

    Periodical cited type(10)

    1. 仇一卿,姚徐伟,卜星,赵舵,张自立,陆伟,倪林斌. 2219铝合金搅拌摩擦焊焊缝X射线影像特征及其形成原因. 电焊机. 2023(06): 117-121+134 .
    2. 丁吉坤,宋建岭,韩国良,田龙,高泽峰. 2219厚板铝合金VPTIG焊接接头组织及性能. 焊接. 2020(04): 47-51+64 .
    3. 丁吉坤,宋建岭,蒙丹阳,高泽峰,王亚森. 2219厚板铝合金钨极和熔化极惰性气体保护焊焊接接头组织与性能对比. 宇航材料工艺. 2020(05): 93-97 .
    4. 蒙丹阳,张登魁,韩国良,张慧峰,孙全. 中厚板2219铝合金摆动TIG焊接头组织及性能研究. 焊接技术. 2020(12): 34-37+120 .
    5. 宋建岭,李庆庆,刘含伟,肖宏,林三宝. Si元素含量对5A06/2219异种铝合金焊接裂纹的影响. 焊接. 2019(02): 35-39+67 .
    6. 刘含伟,王斌,韩国良,王照禹,刘飞. 两种热处理状态2219铝合金对接接头补焊特性. 焊接. 2019(04): 49-53+67-68 .
    7. 阮德重,张登魁,王国庆,单际国,赵玥,吴爱萍. 基于RBF神经网络预测2219铝合金多层TIG焊接头拉伸性能研究. 焊接技术. 2019(06): 22-27 .
    8. 黄诚,王非凡,鄢东洋,刘德博,胡正根. 2219-T87/T852铝合金异质接头力学性能弱化及断裂机制. 宇航材料工艺. 2018(02): 56-60 .
    9. 孙世烜,贾晓喆,高彦军,李超,王凯,李晓光. 冷却条件对2219铝合金搅拌摩擦焊接头组织及性能的影响. 热加工工艺. 2018(17): 25-29+35 .
    10. 颜旭,马核,熊林玉,田志杰,张彦华. 2219铝合金TIG焊接头断裂性能研究. 航天制造技术. 2017(04): 16-20 .

    Other cited types(5)

Catalog

    Article views (679) PDF downloads (19) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return