Advanced Search
XIN Jianwen, WU Dongsheng, LI Fang, ZHANG Yuelong, WUANG Huan, HUA Xueming. Formation mechanism of elongated cavities in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003
Citation: XIN Jianwen, WU Dongsheng, LI Fang, ZHANG Yuelong, WUANG Huan, HUA Xueming. Formation mechanism of elongated cavities in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003

Formation mechanism of elongated cavities in keyhole plasma arc welding

More Information
  • Received Date: April 13, 2021
  • Available Online: December 22, 2021
  • Narrow welding process window often impedes plasma arc welding of medium - thick plate. In keyhole plasma arc welding (K-PAW), it is found that if the keyhole is not opened due to the weak ionic gas flow rate and the blind hole is formed, an elongated cavity parallel to the welding direction will be generated in the weld. When the cavity is formed, the morphology of plasma arc changes obviously. The arc area increases and fluctuates more violently, causing backward reflection. The formation process of elongated cavities was studied by high-speed camera. Experimental results show that the formation processs of elongated cavities is as follows: at a certain welding speed and a low arc energy, the dip angle of the front wall of the molten pool is enlarged, and the plasma arc reflected by the front wall will impact the back side, which would be bended and retained under solidification, then an elongated cavity exists. The study of elongated cavities is helpful to provide a new understanding of keyhole formation conditions and mechanism in keyhole plasma arc welding.
  • Sahoo A, Tripathy S. Development in plasma arc welding process: a review[J]. Materials Today:Proceedings, 2021, 41(1): 363 − 368.
    Ahiale G K, Oh Y J, Choi W D, et al. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes[J]. Metals and Materials International, 2013, 19(5): 933 − 939. doi: 10.1007/s12540-013-5005-3
    Mendez P F, Eagar T W. Welding processes for aeronautics[J]. Advanced Materials and Processes, 2001, 159(5): 39 − 43.
    Wu C S, Jia C B, Chen M A. A control system for keyhole plasma arc welding of stainless steel plates with medium thickness[J]. Weld Journal, 2010, 89(11): 225 − 231.
    Das B, Yadaiah N, Ozah R, et al. A perspective review on estimation of keyhole profile during plasma arc welding process[J]. Materials Today: Proceedings, 2018, 5(2): 6345 − 6350. doi: 10.1016/j.matpr.2017.12.244
    Matsunawa A, Seto N, Kim J D, et al. Dynamics of keyhole and molten pool in high-power CO2 laser welding[J]. High-Power Lasers in Manufacturing. International Society for Optics and Photonics, 2000, 3888: 34 − 45. doi: 10.1117/12.377006
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属熔化焊接头缺欠分类及说明 中国: GB/T 6417.1—2005 [S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, The State Administration of the People's Republic of China for Standardization. Classification and explanation of imperfections in fusion welded joints China: GB/T 6417.1—2005[S]. Beijing: China Standard Press, 2006.
    胡庆贤, 徐斌, 王晓丽, 等. 穿孔型等离子弧焊接热-力耦合模型优化[J]. 焊接学报, 2017, 38(1): 13 − 16.

    Hu Qingxian, Xu Bin, Wang Xiaoli, et al. Optimization of thermal mechanical coupled model of KPAW[J]. Transactions of the China Welding Institution, 2017, 38(1): 13 − 16.
    Wu D, Tashiro S, Hua X, et al. Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model[J]. International Journal of Heat and Mass Transfer, 2019, 141(10): 604 − 614.
    Wu C S, Wang L, Ren W J, et al. Plasma arc welding: Process, sensing, control and modeling[J]. Journal of Manufacturing Processes, 2014, 16(1): 74 − 85. doi: 10.1016/j.jmapro.2013.06.004
    嵇绍奇. 15-5PH不锈钢等离子弧焊接及焊后热处理[D]. 镇江: 江苏科技大学, 2015.

    Ji Shaoqi. Plasma arc welding and postweld heat treatment of15-5PH stainless steel[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.
    Qing Li T, Yang X M, Chen L, et al. Arc behaviour and weld formation in gas focusing plasma arc welding[J]. Science and Technology of Welding and Joining, 2020, 25(4): 329 − 335. doi: 10.1080/13621718.2019.1702284
    Xu J, Rong Y, Huang Y, et al. Keyhole-induced porosity formation during laser welding[J]. Journal of Materials Processing Technology, 2018, 252: 720 − 727. doi: 10.1016/j.jmatprotec.2017.10.038
    Tokar A, Ponomarov V. Influence of pulsed tig welding parameters on the formation of subsurface channels in metal bodies[J]. Известия Тульского государственного университета. Технические науки, 2015, 6(2):84−93.
    李天庆, 陈璐, 张宇, 等. 气流再压缩等离子弧焊接电弧行为[J]. 焊接学报, 2020, 41(5): 50 − 55. doi: 10.12073/j.hjxb.20191125002

    Li Tianqing, Chen Lu, Zhang Yu, et al. Research on arc behavior in gas focusing plasma arc welding[J]. Transactions of the China Welding Institution, 2020, 41(5): 50 − 55. doi: 10.12073/j.hjxb.20191125002
    Han Tao, Gu Shiwei, Xu Liang, et al. Study on stress and deformation of keyhole gas tungsten arc-welded joints[J]. China Welding, 2020, 29(1): 17 − 25.
  • Related Articles

    [1]XIAO Xianfeng, LU Cong, ZHOU Jiawei, LI Yulong, FU Yanshu. Effect of beam incident angle on weld mechanical properties and melt pool flow behavior in laser deep penetration welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 46-52. DOI: 10.12073/j.hjxb.20230715001
    [2]ZHU Libin, WANG Qian, PAN Xuanjun, LI Siliang, GE Xing, ZHANG Heng, LIU Haijiang. Flow characteristics and element distribution of melten pool in 22MnB5 laser welding with Al-Si coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 1-11. DOI: 10.12073/j.hjxb.20230614003
    [3]KUANG Xiaocong, QI Bojin, YANG Jianping, LU Yingyan. Study on the behavior of high-frequency pulsed TIG arc and molten pool flow of Inconel-52M welding wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 1-9. DOI: 10.12073/j.hjxb.20230309005
    [4]PENG Jin, XU Hongqiao, WANG Xingxing, LI Shuai, LI Liqun, LONG Weimin, CHEN Benle. Study on the dynamic behavior of molten pool in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 1-7. DOI: 10.12073/j.hjxb.20221220001
    [5]ZHOU Xiangman, FU Zichuan, BAI Xingwang, TIAN Qihua, FANG Dong, FU Junjian, ZHANG Haiou. Numerical simulation of the effect of wire feeding speed on the molten pool flow and weld bead morphology of WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 109-116. DOI: 10.12073/j.hjxb.20220603001
    [6]LI Liqun, HAO Yu, PENG Jin. Effect of surface tension on flow in laser deep penetration welding molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 13-19. DOI: 10.12073/j.hjxb.2019400034
    [7]WANG Jiajie, JIAO Yong, YU Jiuhao, WANG Guoxing, XU Jianping. Numerical simulations of temperature field and keyhole evolution for electron beam welding pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 87-90.
    [8]LU Hao, XING Jingwei, XING Liwei, LIANG Zhimin. Arc morphology and weld pool flowing in A-MAG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 41-44.
    [9]LIU Shuangyu, ZONG Shishuai, LIU Fengde, ZHANG Hong. Behaviors of element density distribution and melting metal flow in CO2 laser-MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 17-20.
    [10]LEI Yu-cheng, ZHENG Hui-jin, CHENG Xiao-nong. Simulation of molten pool for vertical keyhole plasma arc welding in aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 44-47.
  • Cited by

    Periodical cited type(4)

    1. 洪小龙,黄本生,李天宁,黄思语. 几种常见焊接工艺热源模型的研究进展. 材料热处理学报. 2023(05): 25-38 .
    2. 王海涛,杨博. 直流接触器触头电弧侵蚀特性. 电力工程技术. 2023(03): 53-60 .
    3. 陈宸,周方正,李成龙,刘新锋,贾传宝,徐瑶. 融合空间和通道特征的等离子弧焊熔池熔透状态预测方法. 焊接学报. 2023(04): 30-38+131 . 本站查看
    4. 孙连北,魏坤霞,孟涛,张尧成,魏伟. 等离子弧焊Q345B和430不锈钢异种接头的微观组织与性能. 焊接. 2022(05): 19-23 .

    Other cited types(1)

Catalog

    Article views (426) PDF downloads (34) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return