Citation: | ZHUO Wenbo, TAN Guobi, CHEN Qiuren, HOU Zehong, WANG Xianhui, HAN Weijian, HUANG Li. Multi-objective optimization of resistance spot welding process parameters of ultra-high strength steel based on agent model and NSGA-Ⅱ[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 20-25. DOI: 10.12073/j.hjxb.20230317002 |
In order to find the best welding process parameters for resistance spot welding of ultra-high strength steel, a three-factor and five-level flat plate lap spot welding experiment designed by orthogonal test method was carried out. With welding time, welding current and electrode pressure as adjustable process parameters, the nugget diameter, indentation depth, the tension-shear strength and spatter were used as the quality evaluation indicators of welded joints. Based on Gaussian process regression and BP neural network, a proxy model of the relationship between the process parameters and the quality evaluation indicators of welded joints was established. The training results showed that the accuracy of the model was very high. Finally, the multi-objective optimization was realized by using the genetic algorithm NSGA-Ⅱ with elite strategy and non-dominated sequencing, and the optimal pareto solution set between the evaluation indicators was obtained. The relative error value of each evaluation model was very small, which indicated that the optimization method had good prediction effect and stability. By using less experimental data, the method of establishing the optimization model had important guiding value for the selection of the best welding process parameters in resistance spot welding and other welding fields.
[1] |
Volkers S, Somonov V, Bohm S, et al. Influence on the microstructure of laser beam welds of high-strength steels[J]. Lightweight Design Worldwide, 2017, 10(4): 40 − 45.
|
[2] |
高丽, 周月明, 刘俊亮, 等. 双相钢的研究进展及应用[C]//第七届(2009)中国钢铁年会大会论文集(中), 2009: 938-942.
Gao Li, Zhou Yueming, Liu Junliang, et al. Research progress and application of dual-phase steel [C]//Proceedings of the 7th (2009) China Steel Annual Conference (middle), 2009: 938-942.
|
[3] |
Shi G, Westgate S A. Resistance spot welding of high strength steels[J]. International Journal for the Joining of Materials, 2004, 16(1): 9 − 14.
|
[4] |
Eusebio J M, Jose A E, Valentin M, et al. Optimization of geometric parameters in a welded joint through response surface methodology[J]. Construction and Building Materials, 2017, 154: 105 − 114. doi: 10.1016/j.conbuildmat.2017.07.163
|
[5] |
Yang Y, Cao L, Wang C, et al. Multi-objective process parameters optimization of hot-wire laser welding using ensemble of metamodels and NSGA-II[J]. Robotics and Computer-Integrated Manufacturing, 2018, 53: 141 − 152. doi: 10.1016/j.rcim.2018.03.007
|
[6] |
陶永杰. 面向低碳制造的铝合金薄板激光搅拌焊接工艺参数优化[D]. 武汉: 华中科技大学, 2021.
Tao Yongjie. Optimization of laser stir welding process parameters of aluminum alloy sheet for low-carbon manufacturing [D]. Wuhan: Huazhong University of Science and Technology, 2021.
|
[7] |
吕小青, 王旭, 徐连勇, 等. 基于组合模型的MAG焊工艺参数多目标优化[J]. 焊接学报, 2020, 41(2): 6 − 11. doi: 10.12073/j.hjxb.20190629001
Lü Xiaoqing, Wang Xu, Xu Lianyong, et al. Multi-objective optimization of MAG welding process parameters based on combination model[J]. Transactions of the China Welding Institution, 2020, 41(2): 6 − 11. doi: 10.12073/j.hjxb.20190629001
|
[8] |
Djuric A, Mili D, Klobar D, et al. Multi-objective optimization of the resistance spot-welding process parameters for the welding of dual-phase steel DP500[J]. Materials and Technologies, 2021, 55(2): 201 − 206.
|
[9] |
Zhao D, Ivanov M, Wang Y, et al. Multi-objective optimization of the resistance spot welding process using a hybrid approach[J]. Journal of Intelligent Manufacturing, 2020, 32: 2219 − 2234.
|
[10] |
Zhang G, Lin T, Luo L, et al. Multi-objective optimization of resistance welding process of GF/PP composites.[J]. Multidisciplinary Digital Publishing Institute, 2021, 13(15): 2560.
|
[11] |
姚煜, 胡涛, 付建勋, 等. 小样本分散数据的回归建模和多目标优化[J]. 上海大学学报(自然科学版), 2022, 28(3): 451 − 462.
Yao Yu, Hu Tao, Fu Jianxun, et al. Regression modeling and multi-objective optimization of small sample scattered data[J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(3): 451 − 462.
|
[12] |
许方敏, 许忠斌, 朱科, 等. 基于高斯过程回归的注塑质量多目标优化方法[J]. 塑料工业, 2022, 50(4): 94 − 98,122. doi: 10.3969/j.issn.1005-5770.2022.04.015
Xu Fangmin, Xu Zhongbin, Zhu Ke, et al. Multi-objective optimization method for injection quality based on Gaussian process regression[J]. Plastic Industry, 2022, 50(4): 94 − 98,122. doi: 10.3969/j.issn.1005-5770.2022.04.015
|
[13] |
Palanivel R, Dinaharan I, Laubscher R F. Application of an artificial neural network model to predict the ultimate tensile strength of friction welded titanium tubes[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41: 1 − 13. doi: 10.1007/s40430-018-1505-x
|
[14] |
杨亚超, 全惠敏, 邓林峰, 等. 基于神经网络的焊机参数预测方法[J]. 焊接学报, 2018, 39(1): 32 − 36. doi: 10.12073/j.hjxb.2018390008
Yang Yachao, Quan Huimin, Deng Linfeng, et al. Prediction method of welding machine parameters based on neural network[J]. Transactions of the China Welding Institution, 2018, 39(1): 32 − 36. doi: 10.12073/j.hjxb.2018390008
|
[15] |
刘艺繁, 阎春平, 倪恒欣, 等. 基于GABP和改进NSGA-Ⅱ的高速干切滚齿工艺参数多目标优化决策[J]. 中国机械工程, 2021, 32(9): 1043 − 1050. doi: 10.3969/j.issn.1004-132X.2021.09.005
Liu Yifan, Yan Chunping, Ni Hengxin, et al. Multi-objective optimization decision of high-speed dry cutting gear hobbing process parameters based on GABP and improved NSGA-Ⅱ[J]. China Mechanical Engineering, 2021, 32(9): 1043 − 1050. doi: 10.3969/j.issn.1004-132X.2021.09.005
|
[1] | YANG Jing, XUE Peng, ZHANG Yongfeng, FANG Xu, JIANG Chenyu, SHI Kai. Microstructure and properties of boron carbide ceramic brazed joints with high nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 113-118. DOI: 10.12073/j.hjxb.20230601001 |
[2] | FANG Naiwen, HUANG Ruisheng, YAN Dejun, YANG Yicheng, MA Yiming, LENG Bing. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 70-75. DOI: 10.12073/j.hjxb.20200502001 |
[3] | MING Zhu, WANG Kehong, WANG Wei, WANG Youqi. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 31-35. DOI: 10.12073/j.hjxb.2019400259 |
[4] | MING Zhu, WANG Kehong, WANG Wei, FAN Chenglei, WANG Youqi. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 104-108. DOI: 10.12073/j.hjxb.2019400021 |
[5] | LI Dayong, YANG Dongqing, WANG Ping, ZHANG Guangjun. Analysis on microstructure and properties of under-matching weld joint of high strength steel 10Ni5CrMoV[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 87-91. DOI: 10.12073/j.hjxb.20170519 |
[6] | JING Hao, WANG Kehong, QIANG Wei, KONG Jian. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 95-98. DOI: 10.12073/j.hjxb.20170422 |
[7] | ZHAO Hongyun, LIU Hongwei. Microstructure and properties of TIG welded 22MnB5 ultra high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 67-69,78. |
[8] | ZHAO Lin, TIAN Zhiling, PENG Yun, XU Lianghong, LI Ran. Laser welding of high nitrogen steel 1Cr22Mn16N Ⅲ.Microstructure and mechanical properties of welding heat-affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 26-30. |
[9] | ZHAO Lin, TIAN Zhiling, PENG Yun, ZHAO Xiaobing, QI Yanchang. Laser welding of high nitrogen steel 1Cr22Mn16N-Ⅱ.microstructure and mechanical properties of weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 80-82,86. |
[10] | FU Rui-dong, LI Liang-yu, ZHENG Yang-zeng. TIG Welding of High Manganese Austenitic Steel for Super Cryogenic Application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 21-24. |
1. |
周凡,顾介仁,王克鸿. 等离子弧增材交织结构的组织与力学性能. 焊接. 2023(01): 16-21 .
![]() | |
2. |
李文斌. 城市轨道交通车辆高强钢焊接用焊丝的选用方法. 焊接技术. 2022(03): 80-83 .
![]() | |
3. |
周杰,张明渝,李志洋,张建,范霁康,王克鸿. 高氮不锈钢与675高强钢焊接接头微观组织与力学性能. 焊接. 2022(02): 6-10 .
![]() | |
4. |
杨东青,张建,范霁康,周赵,王克鸿. 高氮奥氏体不锈钢与603马氏体高强钢焊接接头组织及性能. 兵工学报. 2022(08): 1990-1997 .
![]() | |
5. |
郭顺,王鹏翔,周琦,朱军,顾介仁. 等离子弧增材制造双金属交织结构微观组织及力学性能. 焊接学报. 2021(03): 14-19+98 .
![]() |