Citation: | ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002 |
Zhang C, Feng K, Kokawa H, et al. Correlation between microstructural heterogeneity and anisotropy of mechanical properties of laser powder bed fused CoCrFeMnNi high entropy alloy[J]. Materials Science & Engineering A, 2022, 855: 143920.
|
Zhang C, Feng K, Kokawa H, et al. On the origin and evolution of cellular structures in CoCrFeMnNi high entropy alloy fabricated by laser powder bed fusion[J]. Materials Characterization, 2023, 196: 112586. doi: 10.1016/j.matchar.2022.112586
|
Cieslak M, Headley T, Romig A, et al. A melting and solidification study of alloy 625[J]. Metallurgical Transactions A, 1988, 19(9): 2319 − 2331. doi: 10.1007/BF02645056
|
Floreen S, Fuchs G E, Yang W J. The metallurgy of alloy 625[J]. Superalloys, 1994, 718(625): 13 − 37.
|
吴树雄, 尹士科, 路勇超. 镍基耐蚀合金及其焊接特性概述[J]. 焊接技术, 2019(7): 1 − 6. doi: 10.13846/j.cnki.cn12-1070/tg.2019.07.001
Wu Shuxiong, Yin Shike, Lu Yongchao. Nickel-based corrosion-resistant alloy and its welding characteristics[J]. Welding Technology, 2019(7): 1 − 6. doi: 10.13846/j.cnki.cn12-1070/tg.2019.07.001
|
Zhu J, Shao C, Lu F, et al. Origin of the anisotropic ductility and the dynamic recrystallization-like deformation behavior of laser powder bed fusion Inconel 625 at elevated temperature[J]. Scripta Materialia, 2022, 221: 114945. doi: 10.1016/j.scriptamat.2022.114945
|
Zhang F, Levine L E, Allen A J, et al. Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion[J]. Acta Materialia, 2018, 152: 200 − 214. doi: 10.1016/j.actamat.2018.03.017
|
Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys[J]. Acta Materialia, 2017, 139: 244 − 253. doi: 10.1016/j.actamat.2017.05.003
|
张宇, 姜云, 胡晓安. 选区激光熔化成形Inconel 625合金的激光焊接头组织及高温蠕变性能[J]. 焊接学报, 2020, 41(5): 78 − 84.
Zhang Yu, Jiang Yun, Hu Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. Transactions of the China Welding Institution, 2020, 41(5): 78 − 84.
|
Mishurova T, Artzt K, Haubrich J, et al. New aspects about the search for the most relevant parameters optimizing SLM materials[J]. Additive Manufacturing, 2019, 25: 325 − 334. doi: 10.1016/j.addma.2018.11.023
|
Arisoy Y M, Criales L E, Ozel T, et al. Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8): 1393 − 1417. doi: 10.1007/s00170-016-9429-z
|
Brown C U, Jacob G, Stoudt M, et al. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability[J]. Journal of Materials Engineering and Performance, 2016, 25(8): 3390 − 3397. doi: 10.1007/s11665-016-2169-2
|
Criales L E, Arisoy Y M, Lane B, et al. Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis[J]. International Journal of Machine Tools & Manufacture, 2017, 121: 22 − 36.
|
Liu J W, Song Y A, Chen C Y, et al. Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Materials & Design, 2020, 186: 108355. doi: 10.1016/j.matdes.2019.108355
|
Pauza J, Rollett A. Simulation study of hatch spacing and layer thickness effects on microstructure in laser powder bed fusion additive manufacturing using a texture-aware solidification potts model[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 7007 − 7018. doi: 10.1007/s11665-021-06110-7
|
Wan H Y, Zhou Z J, Li C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting[J]. Journal of Materials Science & Technology, 2018, 34(10): 1799 − 1804.
|
Zhou Y H, Zhang Z H, Wang Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. Additive Manufacturing, 2019, 25: 204 − 217. doi: 10.1016/j.addma.2018.10.046
|
[1] | CHEN Shujun, HAO Jian, LI Fang, WU Na. Dynamic characteristics analysis of resistance spot welding pressure signal of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 1-6. DOI: 10.12073/j.hjxb.20190124002 |
[2] | ZHANG Dong1,2, CHEN Maoai1, WU Chuansong1. Optimization of waveform parameters for high speed CMT welding of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 118-122. DOI: 10.12073/j.hjxb.2018390027 |
[3] | LUO Yi, XIE Xiaojian, ZHU Yang, WAN Rui, HU Shaoqiu. Time and frequency domain analysis of metal droplet transfer by acoustic emission signals during pulse MIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 83-86,91. |
[4] | GAO Xiangdong, JIANG Liangzheng, LONG Guanfu. Detection of welding pool width with frequency domain filtering in strong arc reflection environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 5-8. |
[5] | PAN Cunhai, DU Sumei, SONG Yonglun. Displacement signal time-frequency domain analysis and quality judgment of aluminum alloy resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 33-36. |
[6] | ZHANG Xu-dong, CHEN Wu-zhu, LIU Chun, GUO Jing. Coaxial monitoring and penetration control in CO2 laser welding (Ⅱ)-Frequency-field characteristics of coaxial optical signals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 25-28,32. |
[7] | Chen Yanming, Wang Zhiqiang, Cao Biao, et al. A General Approach for Frequency-domain Design of Arc Welding Inverter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 87-89. |
[8] | Pi Youguo, Liang Guangyang, Huang Shisheng. Frequency Domain Mathematical Model of Arc Welding Converter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 70-76. |
[9] | Qi Bojin, Pan Jiluan. Frequency Domain Method for Mesuring Dynamic Properties of Arc Welding Power Sources[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (4): 243-248. |
[10] | Zhang Libin, Liu Haikuan, Yao Yuhuan, Zhao Enmin, Zhang Yawei. Application of frequency domain analysis to SCR rectifier source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 146-152. |
1. |
刘少意,严文荣,陈振明,乔家伟,杨高阳,张新明,王绿原,王克鸿. 机器人智能化焊接技术发展综述. 金属加工(热加工). 2025(06): 1-12 .
![]() |