Advanced Search
Pi Youguo, Liang Guangyang, Huang Shisheng. Frequency Domain Mathematical Model of Arc Welding Converter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 70-76.
Citation: Pi Youguo, Liang Guangyang, Huang Shisheng. Frequency Domain Mathematical Model of Arc Welding Converter[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 70-76.

Frequency Domain Mathematical Model of Arc Welding Converter

More Information
  • Received Date: February 09, 1998
  • Revised Date: November 23, 1998
  • Because arc welding converter is nonlinear, discrete system, the exactitude analytic resolution is difficult to obtain, a average state equation is built in this paper by using state space analysis method.The mathematics model of converter is obtained after linearization.The model is a two-order oscillate element. According to the parameters in arc welding converter that are satisfied the relation ((1)/(RC))2 > >(4)/(LC),so the model can be simplified as a integer series with a one-order inertia element.Based on the model, analysis and revising in frequency domain,several parameters are taken around the theoretical revising parameter,both resistance load and welding experiments are carried out. The results of experiments are matched with theoretical analysis. Practicality analysis have been done in the load which is sudden open circuits or short circuits, start and stop the converter. The results shows that frequency method can be used in arc welding converter. The model deputizes for the basic characteristic of the system,it is determined by the structure,parameters and the static conduct ratio of the system.It can be used in design and analysis of the arc welding converter.
  • Related Articles

    [1]GUAN Dashu, FANG Siyan, ZHOU Zhidan, CHEN Fuqiang, CHEN Mengmeng. Effect of temperature field on the thermal stress of arc spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 109-112. DOI: 10.12073/j.hjxb.2019400217
    [2]ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, JIN Guangri, GONG Feng. Numerical analysis of temperature field of narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 83-87.
    [3]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [4]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [5]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [6]HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108.
    [7]DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100.
    [8]XU Wen-li, MENG Qing-gno, FANG Hong-yuan, XU Guang-yin. Temperature field of high strength aluminum ahoy sheets by twin wire welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 11-14.
    [9]XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.

Catalog

    Article views (297) PDF downloads (61) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return