Advanced Search
Zhang Libin, Liu Haikuan, Yao Yuhuan, Zhao Enmin, Zhang Yawei. Application of frequency domain analysis to SCR rectifier source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 146-152.
Citation: Zhang Libin, Liu Haikuan, Yao Yuhuan, Zhao Enmin, Zhang Yawei. Application of frequency domain analysis to SCR rectifier source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (3): 146-152.

Application of frequency domain analysis to SCR rectifier source

More Information
  • Received Date: March 24, 1995
  • SCR rectifier source is a new type of electric control arc welding power source.Its perfomance depends on the main and flip-flop circuits.The behaviour of the main circuit depends on the inductor and its parameter.The function of the flip-flop depends on the type of synchronous shift phase singnal and the mode of feedback control.In this paper,the relation between the feedback control mode and the source performance is analysed by using frequency domin analysis and computer simulation technique.The results show that a reasonable feedback control mode and its electric parameters are necessary conditions that make the SCR rectifier power source obtain optimum performance.
  • Related Articles

    [1]YUE Jianfeng, XU Kai, LIU Wenji, SHEN Zhenqian. Relationship between welding torch shift and penetration shape in asymmetrical root welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 71-76. DOI: 10.12073/j.hjxb.2019400238
    [2]GAO Xiangdong, LIU Yonghua. Detection of micro-gap seam offset based on wavelet transformation during high-power fiber laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 1-4.
    [3]BI Shujuan, LAN Hu, LIU Lijun. On-line monitoring of penetration status based on characteristic analysis of arc sound signal in MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 17-20.
    [4]LIU Lijun, LAN Hu, WEN Jianli, YU Zhongwei. Feature extraction of penetration arc sound in MIG welding via wavelet packet frequency-band energy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 45-49.
    [5]WEN Jianli, LIU Lijun, LAN Hu. Penetration state recognition of MIG welding based on genetic wavelet neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 41-44.
    [6]CAO Yong, ZHU Sheng, SUN Lei, SHEN Canduo. Cross-section modeling of weld bead for rapid prototyping by MAG welding based on wavelet transform[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 29-32.
    [7]XUE Jia-xiang, LIU Xiao, ZHANG Li-ling, WANG Zhen-min. Seam tracking in metal active-gas welding based on wavelet transform[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 13-16.
    [8]HUANG Jun-fen, JIANG Li-pei, ZOU Yong, YIN Shu-yan. Wavelet transform algorithm of seam image process with DSP[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 77-80.
    [9]ZHAGN Xu-Dong, CHEN Wu-zhu, LIU Chun, GUO Jing. Coaxial monitoring and penetration control in CO2 laser welding (Ⅰ)——Penetration status characteristics and coaxial monitoring[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 1-4.
    [10]Pan Jiluan, Chen Qiang, Wu Zhiqiang. Penetration control of MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (1): 53-58.

Catalog

    Article views (296) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return