Citation: | XU Jiajun, HUANG Yu, WANG Lu, RONG Youmin. Determining heat source parameters based on particle swarm optimization for temperature field simulation of EH40/316L high power laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 31-39. DOI: 10.12073/j.hjxb.20230202002 |
The welding transient temperature field has an important influence on the simulation results of welding residual stress and deformation. To improve the accuracy of the temperature field simulation in EH40/316L high power laser welding, an intelligent calculation method is developed to optimize the empirical parameters of heat source model. This method uses MATLAB software to randomly generate the empirical parameters, calls ANSYS software to execute the APDL command of the welding temperature field simulation, and returns the result data when the calculation is completed. Then, based on the swarm intelligence and evolutionary intelligence of particle swarm optimization algorithm, new empirical parameters of the heat source are generated according to the prediction results. The iterative calculation is carried out until the prediction results are the optimal results. 10 cases of empirical parameter optimization are performed, and the parameter sensitivity of heat source model is analyzed according to the optimization results. The results show that the average calculation time of the 10 cases is 30.3 hours, and the maximum, minimum and average prediction errors are 2.84%, 2.06% and 2.16% respectively. This indicates a great improvement in the simulation accuracy of welding temperature field. Meanwhile, it can be seen from the response surface of the prediction error and the empirical parameters, that the mathematical function between them is a multi-valley function and has a complex nonlinear relationship.
[1] |
张建强, 张国栋, 姚兵印, 等. 马氏体/奥氏体异种钢焊接接头Ⅳ型蠕变失效数值模拟[J]. 机械工程学报, 2013, 49(12): 78 − 83. doi: 10.3901/JME.2013.12.078
Zhang Jianqiang, Zhang Guodong, Yao Bingyin, et al. Numerical simulation on the type IV creep failure of dissimilar welded joint between T91 and HR3C heat-resistant steels[J]. Journal of Mechanical Engineering, 2013, 49(12): 78 − 83. doi: 10.3901/JME.2013.12.078
|
[2] |
Wang Y, Jiang P, Geng S, et al. Influence of the wrinkle surface structures on the vapor flow and keyhole stability in 20 kW high power laser welding[J]. International Journal of Heat and Mass Transfer, 2022, 193(9): 1 − 12.
|
[3] |
蔡建鹏, 叶延洪, 张彦杰, 等. 坡口形式对Q345/SUS304异种钢对接接头残余应力和变形的影响[J]. 机械工程学报, 2015, 51(10): 56 − 61.
Cai Jianpeng, Ye Yanhong, Zhang Yanjie, et al. Study on influences of groove type on welding residual stress and deformation in Q345/SUS304 dissimilar ssteel butt-welded joints[J]. Journal of Mechanical Engineering, 2015, 51(10): 56 − 61.
|
[4] |
Rong Y, Chang Y, Xu J, et al. Numerical analysis of welding deformation and residual stress in marine propeller nozzle with hybrid laser-arc girth welds[J]. International Journal of Pressure Vessels and Piping, 2017, 158(12): 51 − 58.
|
[5] |
Fu G, Lourenço M I, Duan M, et al. Influence of the welding sequence on residual stress and distortion of fillet welded structures[J]. Marine Structures, 2016, 46: 30 − 55.
|
[6] |
Harati E, Karlsson L, Svensson L E, et al. The relative effects of residual stresses and weld toe geometry on fatigue life of weldments[J]. International Journal of Fatigue, 2015, 77(4): 160 − 165.
|
[7] |
王苹, 裴宪军, 钱宏亮, 等. 焊接结构抗疲劳设计新方法与应用[J]. 机械工程学报, 2021, 57(16): 349 − 360. doi: 10.3901/JME.2021.16.349
Wang Ping, Pei Xianjun, Qian Hongliang, et al. Unique fatigue design method of welded structures and application[J]. Journal of Mechanical Engineering, 2021, 57(16): 349 − 360. doi: 10.3901/JME.2021.16.349
|
[8] |
邓德安, 梁伟, 罗宇, 等. 采用热弹塑性有限元方法预测低碳钢钢管焊接变形[J]. 焊接学报, 2006, 27(1): 76 − 80.
Deng Dean, Liang Wei, Luo Yu, et al. Prediction of welding distortion in a mild steel pipe by means of thermal-elastic-plastic finite element method[J]. Transactions of the China Welding Institution, 2006, 27(1): 76 − 80.
|
[9] |
Zhang C, Li S, Sun J, et al. Controlling angular distortion in high strength low alloy steel thick-plate T-joints[J/OL]. Journal of Materials Processing Technology, 2019, 267(September 2018): 257–267.
|
[10] |
Deng D, Murakawa H. Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel[J]. Computational Materials Science, 2013, 78(6): 55 − 62.
|
[11] |
Rong Y, Wang L, Wu R, et al. Visualization and simulation of 1700MS sheet laser welding based on three-dimensional geometries of weld pool and keyhole[J]. International Journal of Thermal Sciences, 2022, 171(9): 1 − 11.
|
[12] |
Rong Y, Mi G, Xu J, et al. Laser penetration welding of ship steel EH36: A new heat source and application to predict residual stress considering martensite phase transformation[J]. Marine Structures, 2018, 61: 256 − 267.
|
[13] |
Rahman Chukkan J, Vasudevan M, Muthukumaran S, et al. Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation[J]. Journal of Materials Processing Technology, 2015, 219(8): 48 − 59.
|
[14] |
杨建国, 陈绪辉, 张学秋. 高能束焊接数值模拟可变新型热源模型的建立[J]. 焊接学报, 2010, 31(2): 25 − 28.
Yang Jianguo, Chen Xuhui, Zhang Xueqiu. Numerical modeling of new alterable heat source based on high energy welding beam[J]. Transactions of the China Welding Institution, 2010, 31(2): 25 − 28.
|
[15] |
吴甦, 赵海燕, 王煜, 等. 高能束焊接数值模拟中的新型热源模型[J]. 焊接学报, 2004, 25(1): 91 − 94.
Wu Su, Zhao Haiyan, Wang Yu, et al. A new heat source model in numerical simulation of high energy beam welding[J]. Transactions of the China Welding Institution, 2004, 25(1): 91 − 94.
|
[16] |
胥国祥. 激光 + GMAW-P复合热源焊焊缝成形的数值模拟[D]. 山东: 山东大学, 2009.
Xu Guoxiang. Numerical simulation of weld formation in laser + GMAW-P hybrid welding [D]. Shandong: Sandong University, 2009.
|
[17] |
张维明, 武传松, 秦国梁, 等. 铝合金激光 + 脉冲GMAW复合焊焊缝成形的预测[J]. 机械工程学报, 2013, 49(10): 110 − 115. doi: 10.3901/JME.2013.10.110
Zhang Weiming, Wu Chuansong, Qin Guoliang, et al. Prediction of Weld Shape and Size for Laser + GMAW-P Hybrid Welding of Aluminium Alloys[J]. Journal of Mechanical Engineering, 2013, 49(10): 110 − 115. doi: 10.3901/JME.2013.10.110
|
[18] |
Deng D, Liang W, Murakawa H. Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements[J]. Journal of Materials Processing Technology, 2007, 183(2-3): 219 − 225. doi: 10.1016/j.jmatprotec.2006.10.013
|
[19] |
Wang L, Zhang G, Xu J, et al. Effect of collapse and hump on thermomechanical behavior in high-power laser welding of 16-mm marine steel EH40[J]. The international Journal of Advanced Manufacturing Technology, 2022, 120(3): 2003 − 2013.
|
[20] |
Rong Y, Xu J, Lei T, et al. Microstructure and alloy element distribution of dissimilar joint 316L and EH36 in laser welding[J]. Science and Technology of Welding and Joining, 2018, 23(6): 454 − 461. doi: 10.1080/13621718.2017.1410342
|
[21] |
Zhang L, Zhang G, Bai X, et al. Effect of the process parameters on the three-dimensional shape of molten pool during full-penetration laser welding process.[J] The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 1273–1286.
|
[22] |
Brickstad B, Josefson B L. A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes[J]. International Journal of Pressure Vessels and Piping, 1998, 75(1): 11 − 25. doi: 10.1016/S0308-0161(97)00117-8
|
[23] |
Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN’95 - International Conference on Neural Networks.preceedings conference on neural netnork. IEEE,1995,4:1942-1948
|
[24] |
Rong Y, Xu J. Forming mechanism of weld ccross section and validating thermal aanalysis results based on the maximal temperature field for laser welding[J]. Metals, 2022, 12(774): 1 − 9.
|
[25] |
Farias R M, Teixeira P R F, Vilarinho L O. An efficient computational approach for heat source optimization in numerical simulations of arc welding processes[J]. Journal of Constructional Steel Research, 2021, 176(10): 1 − 13.
|
[1] | WANG Meng, ZHANG Liping, ZHAO Linyu, WU Jun, XIONG Ran, MENG Yongsheng, LI Junhong. Comparative study on the microstructure and mechanical properties of the laser welded joints of additive manufactured and forged TC11 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 102-110. DOI: 10.12073/j.hjxb.20221114001 |
[2] | AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002 |
[3] | ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001 |
[4] | XIE Yujiang, YANG Yule, CHI Changtai. Microstructures and mechanical properties of laser metal deposited 24CrNiMo steel in different atmospheres[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 19-24. DOI: 10.12073/j.hjxb.20190905001 |
[5] | YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205 |
[6] | ZHANG Jianchao1, QIAO Junnan1, WU Shikai1, LIAO Hongbin2, WANG Xiaoyu2. Microstructure and mechanical properties of fiber laser welded joints of reduced activation ferritic/martensitic CLF-1 steel heavy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 124-128. DOI: 10.12073/j.hjxb.2018390109 |
[7] | DU Borui, TIAN Xiangjun, WANG Huaming. Microstructure and mechanical properties of MIG welded joint of laser melting deposited TA15 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 65-68. |
[8] | ZHANG Man, XUE Songbai, DAI Wei, LOU Yinbin, WANG Shuiqing. Mechanical properties and microstructure of 3003 Al-alloy brazed joint with Zn-Al filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 61-64. |
[9] | CHENG Donghai, HUANG Jihua, LIN Haifan, ZHANG Hua. Microstructure and mechanical analysis of Ti-6Al-4V laser butt weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 103-106. |
[10] | SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108. |
1. |
胡伟钦,谢悠,徐芯茹,谭瑞轩,杨腾飞. SPS工艺下Ti中间层连接SiC陶瓷的接头组织与强度研究. 电焊机. 2025(04): 40-48 .
![]() | |
2. |
杨晶,薛鹏,张永锋,房旭,江晨雨,石凯. 碳化硼陶瓷与高氮钢钎焊接头组织和性能. 焊接学报. 2024(05): 113-118 .
![]() | |
3. |
程伟,王哲,程经纬,江慧丰,陶元宏,陈炜. 碳纤维复合材料气瓶声发射监测试验研究. 压力容器. 2022(03): 71-80 .
![]() | |
4. |
鲁明远,韩保红,赫万恒,赵忠民. TiB_2基陶瓷/42CrMo合金层状梯度材料力学测试与结构设计. 焊接学报. 2021(09): 42-48+73+99 .
![]() |