Citation: | AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002 |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.
Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 − 2698.
|
龚淼, 戴士杰, 王志平, 等. 航空压气机叶片增材修复最优热输入分析[J]. 焊接学报, 2020, 41(8): 39 − 47,99. doi: 10.12073/j.hjxb.20200602001
Gong Miao, Dai Shijie, Wang Zhiping, et al. Research on optimal heat input for blade repair of aero compressor[J]. Transactions of the China Welding Institution, 2020, 41(8): 39 − 47,99. doi: 10.12073/j.hjxb.20200602001
|
林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245
Lin Xin, Huang Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245
|
张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918 − 926. doi: 10.11900/0412.1961.2016.00472
Zhang Wenqi, Zhu Haihong, Hu Zhiheng, et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 2017, 53(8): 918 − 926. doi: 10.11900/0412.1961.2016.00472
|
张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(1): 39 − 55. doi: 10.7502/j.issn.1674-3962.2013.01.04
Zhang Xinming, Liu Shengdan. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(1): 39 − 55. doi: 10.7502/j.issn.1674-3962.2013.01.04
|
陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128,134. doi: 10.12073/j.hjxb.2018390214
Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128,134. doi: 10.12073/j.hjxb.2018390214
|
洪恩航, 刘美红, 黎振华. 基于开源切片路径规划的机器人电弧增材制造系统[J]. 焊接学报, 2021, 42(11): 65 − 69. doi: 10.12073/j.hjxb.20210312004
Hong Enhang, Liu Meihong, Li Zhenhua. Development of wire arc additive manufacturing robotic system based on open source slicing software for path planning[J]. Transactions of the China Welding Institution, 2021, 42(11): 65 − 69. doi: 10.12073/j.hjxb.20210312004
|
张兆栋, 曾庆文, 刘黎明, 等. 铝合金激光诱导MIG电弧增材制造成形尺寸规律[J]. 焊接学报, 2019, 40(8): 7 − 12.
Zhang Zhaodong, Zeng Qingwen, Liu Liming, et al. Forming regularity of aluminum alloy formed by laser induced MIG arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(8): 7 − 12.
|
樊丁, 李楠, 黄健康, 等. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279
Fan Ding, Li Nan, Huang Jiankang, et al. Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment[J]. Transactions of the China Welding Institution, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279
|
Uzan N E, Shneck R, Yeheskel O, et al. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM)[J]. Materials Science & Engineering:A, 2017, 704: 229 − 237.
|
Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809 − 1819. doi: 10.1016/j.actamat.2012.11.052
|
Tang M, Pistorius P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2017, 94: 192 − 201. doi: 10.1016/j.ijfatigue.2016.06.002
|
Kempen K, Thijs L, Humbeeck J V. Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation[J]. Materials Science & Technology, 2015, 31(8): 917 − 923.
|
Leary M, Mazur M, Elambasseril J, et al. Selective laser melting (SLM) of AlSi12Mg lattice structures[J]. Materials & Design, 2016, 98: 344 − 357.
|
Kaufmann N, Imran M, Wischeropp T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918 − 926. doi: 10.1016/j.phpro.2016.08.096
|
Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Materials & Design, 2015, 65: 417 − 424.
|
Rakesh C S, Priyanka N, Jayaganthan R, et al. Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting[J]. Materials Today: Proceedings, 2018, 5(9): 17231 − 17238. doi: 10.1016/j.matpr.2018.04.133
|
Zaretsky E, Stern A, Frage N, et al. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting[J]. Materials Science & Engineering: A, 2017, 688: 364 − 370.
|
Jawade S A, Joshi R S, Desai S B. Comparative study of mechanical properties of additively manufactured aluminum alloy[J]. Materials Today: Proceedings, 2021, 46(19): 9270 − 9274.
|
吴正凯. 基于缺陷三维成像的增材铝合金各向异性疲劳性能评价[D]. 成都: 西南交通大学, 2020.
Wu Zhengkai. Evaluation of anisotropic fatigue performance of additively manufactured aluminium alloy based on 3D X-ray computed tomography of defects [D]. Chengdu: Southwest Jiaotong University, 2020.
|
余开斌, 刘允中, 杨长毅. 热处理对选区激光熔化成形AlSi10Mg合金显微组织及力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 298 − 305. doi: 10.3969/j.issn.1673-0224.2018.03.010
Yu Kaibin, Liu Yunzhong, Yang Changyi. Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 298 − 305. doi: 10.3969/j.issn.1673-0224.2018.03.010
|
董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015, 35(5): 607 − 611. doi: 10.14128/j.cnki.al.20153505.607
Dong Peng, Li Zhonghua, Yan Zhenyu, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607 − 611. doi: 10.14128/j.cnki.al.20153505.607
|
廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3): 648 − 701. doi: 10.6052/1000-0992-21-037
Lian Yanping, Wang Panding, Gao Jie, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review[J]. Advances in Mechanics, 2021, 51(3): 648 − 701. doi: 10.6052/1000-0992-21-037
|
Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270 − 284.
|
宋哲. 选区激光熔化钛合金的缺陷容限评价方法[D]. 成都: 西南交通大学, 2019.
Song Zhe. Evaluation method of defect tolerance of selective laser melting titanium alloy[D]. Chengdu: Southwest Jiaotong University, 2019.
|
王凯, 焦向东, 朱加雷, 等. 激光功率密度对SLM成形TC4磨损性能的影响[J]. 焊接学报, 2020, 41(5): 61 − 64. doi: 10.12073/j.hjxb.20190926001
Wang Kai, Jiao Xiangdong, Zhu Jialei, et al. Effect of laser power density on wear resistance of TC4 alloy manufactured by SLM[J]. Transactions of the China Welding Institution, 2020, 41(5): 61 − 64. doi: 10.12073/j.hjxb.20190926001
|
Chen J, Hou W, Wang X Z, et al. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg[J]. Chinese Journal of Aeronautics, 2020, 33(7): 2043 − 2054. doi: 10.1016/j.cja.2019.08.017
|
Aboulkhair N T, Everitt N M, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1: 77 − 86.
|
Wu H H, Li J F, Wei Z Y, et al. Effect of processing parameters on forming defects during selective laser melting of AlSi10Mg powder[J]. Rapid Prototyping Journal, 2020, 26(5): 871 − 879. doi: 10.1108/RPJ-07-2018-0184
|
Fiegl T, Franke M, Koerner C, et al. Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg[J]. Optics & Laser Technology, 2019, 111: 51 − 57.
|
Jiang X H, Ye T, Zhu Y H. Effect of process parameters on residual stress in selective laser melting of AlSi10Mg[J]. Materials Science & Technology, 2020, 36(3): 342 − 352.
|
Biffi C A, Fiocchi J, Tuissi A. Selective laser melting of AlSi10 Mg: Influence of process parameters on Mg2Si precipitation and Si spheroidization[J]. Journal of Alloys & Compounds, 2018, 755: 100 − 107.
|
蔡笑宇, 董博伦, 殷宪铼, 等. 预热温度对GTA增材制造钛铝合金组织及性能的影响[J]. 焊接学报, 2021, 42(10): 14 − 21.
Cai Xiaoyu, Dong Bolun, Yin Xianlai, et al. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. Transactions of the China Welding Institution, 2021, 42(10): 14 − 21.
|
Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34: 159 − 169.
|
Trevisan F, Calignano F, Lorusso M. On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties[J]. Materials, 2017, 10(1): 76. doi: 10.3390/ma10010076
|
Jian Z M, Qian G A, Paolino D S, et al. Crack initiation behavior and fatigue performance up to very-high-cycle regime of AlSi10Mg fabricated by selective laser melting with two powder sizes[J]. International Journal of Fatigue, 2021, 143: 106013. doi: 10.1016/j.ijfatigue.2020.106013
|
Biffi C A, Fiocchi J, Bassani P, et al. Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: Microstructure and mechanical behaviour[J]. Additive Manufacturing, 2018, 24: 639 − 646. doi: 10.1016/j.addma.2018.10.021
|
Ahmad B A, Pham Q C. Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing & Technology, 2017, 240: 388 − 396.
|
杨义成, 黄瑞生, 孙谦, 等. 激光送粉增材制造光粉交互作用机制分析[J]. 焊接学报, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290
Yang Yicheng, Huang Ruisheng, Sun Qian, et al. Mechanism analysis of interaction between laser and particles in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290
|
Hitzler L, Janousch C, Schanz J, et al. Direction and location dependency of selective laser melted AlSi10Mg specimens[J]. Journal of Materials Processing Technology, 2017, 243: 48 − 61. doi: 10.1016/j.jmatprotec.2016.11.029
|
Maconachie T, Leary M, Zhang J J, et al. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg[J]. Materials Science & Engineering: A, 2020, 788: 139445.
|
Kempen K, Thijs L, Humbeeck J V, et al. Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Physics Procedia, 2012, 39: 439 − 446. doi: 10.1016/j.phpro.2012.10.059
|
Rosenthal I, Stern A, Frage N, et al. Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology[J]. Metallography, Microstructure, and Analysis, 2014, 3(6): 448 − 453.
|
Hitzler L, Schoch N, Heine B, et al. Compressive behaviour of additively manufactured AlSi10Mg[J]. Materialwissenschaft und Werkstofftechnik, 2018, 49(5): 683 − 688. doi: 10.1002/mawe.201700239
|
Hitzler L, Hirsch J, Schanz J, et al. Fracture toughness of selective laser melted AlSi10Mg[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(4): 615 − 621.
|
Bar N, Moshe N, Adin S, et al. Study on the dynamic properties of AM-SLM AlSi10Mg alloy using the Split Hopkinson Pressure Bar (SHPB) technique[J]. EPJ Web of Conferences, 2018, 183: 04005. doi: 10.1051/epjconf/201818304005
|
Xu Z W, Liu A, Wang X S, et al. Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions[J]. Materials Science & Engineering: A, 2021, 812: 141141.
|
Wu Z K, Wu S C, Bao J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2021, 151: 106317. doi: 10.1016/j.ijfatigue.2021.106317
|
Beretta S, Gargourimotlagh M, Foletti S, et al. Fatigue strength assessment of "as built" AlSi10Mg manufactured by SLM with different build orientations[J]. International Journal of Fatigue, 2020, 139: 105737. doi: 10.1016/j.ijfatigue.2020.105737
|
Nezhadfar P D, Thompson S, Saharan A, et al. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior[J]. Additive Manufacturing, 2021, 47: 102292. doi: 10.1016/j.addma.2021.102292
|
Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science & Engineering: A, 2016, 663: 116 − 125.
|
Wang L F, Sun J, Zhu X G, et al. Effects of T2 heat treatment on microstructure and properties of the selective laser melted aluminum alloy samples[J]. Materials, 2018, 11(1): 66. doi: 10.3390/ma11010066
|
Casati R, Hamidi N M, Coduri M, et al. Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting[J]. Metals, 2018, 8(11): 954. doi: 10.3390/met8110954
|
Rosenthal I, Nahmany M, Stern A, et al. Structure and mechanical properties of AlSi10Mg fabricated by selective laser melting additive manufacturing (SLM-AM)[J]. Advanced Materials Research, 2015, 1111: 62 − 66. doi: 10.4028/www.scientific.net/AMR.1111.62
|
Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering: A, 2016, 667: 139 − 146.
|
Tridello A, Fiocchi J, Biffi C A, et al. Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(12): 2794 − 2807.
|
Larrosa N O, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy[J]. Theoretical & Applied Fracture Mechanics, 2018, 98: 123 − 133.
|
Finfrock C B, Exil A, Carroll J D, et al. Effect of hot isostatic pressing and powder feedstock on porosity, microstructure, and mechanical properties of selective laser melted AlSi10Mg[J]. Metallography, Microstructure, and Analysis, 2018, 7(4): 443 − 456.
|
Zhang C C, Zhu H H, Liao H L, et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg[J]. International Journal of Fatigue, 2018, 116: 513 − 522. doi: 10.1016/j.ijfatigue.2018.07.016
|
Han Q Q, Jiao Y. Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(9-12): 3315 − 3324. doi: 10.1007/s00170-018-03272-y
|
张弛, 沈忱, 李芳, 等. 铝合金熔丝增材制造表面平整度研究[J]. 电焊机, 2020, 50(2): 53 − 57. doi: 10.7512/j.issn.1001-2303.2020.02.11
Zhang Chi, Shen Chen, Li Fang, et al. Study on surface flatness of aluminum alloy by wire arc additive manufacturing(WAAM)[J]. Electric Welding Machine, 2020, 50(2): 53 − 57. doi: 10.7512/j.issn.1001-2303.2020.02.11
|
唐琪, 陈静青, 陈鹏, 等. 基于有限元的激光增材过程熔化热积累模拟[J]. 焊接学报, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189
Tang Qi, Chen Jingqing, Chen Peng, et al. Finite element simulation of melting heat accumulation in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189
|
Li Z H, Li B Q, Bai P K, et al. Research on the thermal behaviour of a selectively laser melted aluminium alloy: Simulation and experiment[J]. Materials, 2018, 11(7): 1172. doi: 10.3390/ma11071172
|
Ding X P, Wang L Z. Heat transfer and fluid flow of molten pool during selective laser melting of AlSi10Mg powder: Simulation and experiment[J]. Journal of Manufacturing Processes, 2017, 26: 280 − 289. doi: 10.1016/j.jmapro.2017.02.009
|
Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63: 856 − 867.
|
Liu S W, Zhu H H, Peng G Y, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142: 319 − 328.
|
Hu H W, Ding X P, Wang L Z. Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg[J]. Optik - International Journal for Light & Electron Optics, 2016, 127(20): 8883 − 8891.
|
Nadot Y, Nadot-Martin C, Kan W H, et al. Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography[J]. Additive Manufacturing, 2020, 32: 100899. doi: 10.1016/j.addma.2019.100899
|
Wang P D, Lei H S, Zhu X L, et al. Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Alloys & Compounds, 2019, 789: 852 − 859.
|
Wang P D, Zhou H, Zhang L M, et al. In situ X-ray micro-computed tomography study of the damage evolution of prefabricated through-holes in SLM-Printed AlSi10Mg alloy under tension[J]. Journal of Alloys & Compounds, 2020, 821: 153576.
|
Amani Y, Dancette S, Delroisse P, et al. Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element up approaches[J]. Acta Materialia, 2018, 159: 395 − 407. doi: 10.1016/j.actamat.2018.08.030
|
Li Z H, Nie Y F, Liu B, et al. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting[J]. Materials & Design, 2020, 192: 108709.
|
Zhang W J, Hu Y Y, Ma X F, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling[J]. International Journal of Fatigue, 2021, 145: 106109. doi: 10.1016/j.ijfatigue.2020.106109
|
Subbiah R, Bensingh J, Kader A, et al. Influence of printing parameters on structures, mechanical properties and surface characterization of aluminium alloy manufactured using selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(11-12): 5137 − 5147. doi: 10.1007/s00170-020-04929-3
|
Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue, 2017, 94: 178 − 191. doi: 10.1016/j.ijfatigue.2016.06.020
|
Daniewicz S R, Shamsaei N. An introduction to the fatigue and fracture behavior of additive manufactured parts[J]. International Journal of Fatigue, 2017, 94: 167. doi: 10.1016/j.ijfatigue.2016.07.007
|
Leuders S, Thone M, Riemer A, et al. On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2018, 48: 300 − 307.
|
虞雨洭, 吴正凯, 吴圣川. 高分辨三维成像原位试验机研制进展及应用[J]. 中国材料进展, 2021, 40(2): 90 − 104. doi: 10.7502/j.issn.1674-3962.202007031
Yu Yukuang, Wu Zhengkai, Wu Shengchuan. Development and application of in-situ testing machines based on high resolution three-dimensional tomography[J]. Materials China, 2021, 40(2): 90 − 104. doi: 10.7502/j.issn.1674-3962.202007031
|
Xie C, Wu S C, Yu Y K, et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling[J]. Journal of Materials Processing Technology, 2021, 291: 117039. doi: 10.1016/j.jmatprotec.2020.117039
|
吴圣川, 吴正凯, 谢成, 等. 基于X射线成像的大载荷高频率原位拉伸和疲劳试验机: CN201910210664.3[P]. 2019 − 03 − 20.
Wu Shengchuan, Wu Zhengkai, Xie Zheng, et al. Large load high frequency in situ tensile and fatigue testing machine based on X-ray imaging: CN201910210664.3[P]. 2019 − 03 − 20.
|
吴圣川, 吴正凯, 康国政, 等. 先进材料多维多尺度高通量表征研究进展[J]. 机械工程学报, 2021, 57(16): 37 − 65. doi: 10.3901/JME.2021.16.037
Wu Shengchuan, Wu Zhengkai, Kang Guozheng, et al. Research progress on multi-dimensional and multi-scale high-throughput characterization for advanced materials[J]. Journal of Mechanical Engineering, 2021, 57(16): 37 − 65. doi: 10.3901/JME.2021.16.037
|
Bao J G, Wu S C, Withers P J, et al. Defect evolution during high temperature tension-tension fatigue of SLM AISi10Mg alloy by synchrotron tomography[J]. Materials Science & Engineering: A, 2020, 792: 139809.
|
Bao J G, Wu Z K, Wu S C, et al. Hot dwell-fatigue behaviour of additively manufactured AlSi10Mg alloy: Relaxation, cyclic softening and fracture mechanisms[J]. International Journal of Fatigue, 2021, 151: 106408. doi: 10.1016/j.ijfatigue.2021.106408
|
Haboub A, Bale H A, Nasiatka J R, et al. Tensile testing of materials at high temperatures above 1700 ℃ with in situ synchrotron X-ray micro-tomography[J]. The Review of Scientific Instruments, 2014, 85(8): 083702. doi: 10.1063/1.4892437
|
Sloof W G, Pei R Z, Mcdonald S A, et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy[J]. Scientific Reports, 2016, 6(1): 23040. doi: 10.1038/srep23040
|
Puncreobutr C, Lee P D, Hamilton R W, et al. Synchrotron tomographic characterization of damage evolution during aluminum alloy solidification[J]. Metallurgical and Materials Transactions A, 2013, 44(12): 5389 − 5395. doi: 10.1007/s11661-012-1563-0
|
Terzi S, Salvo L, Suery M, et al. In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys[J]. Scripta Materialia, 2009, 61(5): 449 − 452. doi: 10.1016/j.scriptamat.2009.04.041
|
Suery M, Terzi S, Mireux B, et al. Fast in situ X-ray microtomography observations of solidification and semisolid deformation of Al-Cu alloys[J]. Journal of Materials Science, 2012, 64(1): 83 − 88. doi: 10.1007/s11837-011-0219-7
|
Wang Z Y, Wu S C, Kang G Z, et al. In-situ synchrotron X-ray tomography investigation of damage mechanism of an extruded magnesium alloy in uniaxial low-cycle fatigue with ratchetting[J]. Acta Materialia, 2021, 211: 116881. doi: 10.1016/j.actamat.2021.116881
|
Wu S C, Song Z, Kang G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography[J]. International Journal of Fatigue, 2019, 125: 210 − 221. doi: 10.1016/j.ijfatigue.2019.04.002
|
Messager A, Junet A, Palin-Luc T, et al. In situ synchrotron ultrasonic fatigue testing device for 3D characterisation of internal crack initiation and growth[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(3): 558 − 567.
|
Wu S C, Xiao T Q, Withers P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography[J]. Engineering Fracture Mechanics, 2017, 182: 127 − 156. doi: 10.1016/j.engfracmech.2017.07.027
|
Wu S C, Yu C, Yu P S, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science & Engineering: A, 2016, 651: 604 − 614.
|
Teranishi M, Kuwazuru O, Gennai S, et al. Three-dimensional stress and strain around real shape Si particles in cast aluminum alloy under cyclic loading[J]. Materials Science & Engineering: A, 2016, 678: 273 − 285.
|
Qu P, Toda H, Zhang H, et al. Local crack driving force analysis of a fatigue crack by a microstructural tracking method[J]. Scripta Materialia, 2009, 61(5): 489 − 492. doi: 10.1016/j.scriptamat.2009.05.004
|
Hu Y N, Ao N, Wu S C, et al. Influence of in situ micro-rolling on the improved strength and ductility of hybrid additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 253: 107868. doi: 10.1016/j.engfracmech.2021.107868
|
Zhang B, Huang H M, Wu S C, et al. In-situ X-ray tomography on permeability evolution of C/SiC porous ceramic for hypersonic vehicles[J]. Ceramics International, 2021, 47(19): 27770 − 27777. doi: 10.1016/j.ceramint.2021.06.204
|
吴圣川, 吴正凯, 鲍泓翊玺, 等. 基于先进光源原位成像的超高周疲劳损伤试验系统: CN201910523647.5[P]. 2019 − 06 − 17.
Wu Shengchuan, Wu Zhengkai, Bao Hongyixi, et al. Ultra-high cycle fatigue damage test system based on advanced light source in situ imaging: CN201910523647.5 [P]. 2019 − 06 − 17.
|
吴圣川, 谢成, 吴正凯, 等. 一种采用X射线三维成像的悬臂式旋转弯曲原位疲劳试验机: CN201810852157.5[P]. 2018 − 07 − 30.
Wu Shengchuan, Xie Cheng, Wu Zhengkai, et al. A cantilever rotating bending in situ fatigue testing machine using X-ray 3D imaging: CN201810852157.5 [P]. 2018 − 07 − 30.
|
Kan W H, Chiu L N S, Lim C V S, et al. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion[J]. Journal of Materials Science, 2022, 57: 9818 − 9865. doi: 10.1007/s10853-022-06990-7
|
Murakami Y, Takagi T, Wada K, et al. Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter[J]. International Journal of Fatigue, 2021, 146: 106138. doi: 10.1016/j.ijfatigue.2020.106138
|
Qian G A, Jian Z M, Qian Y J, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selective laser melting: Effect of build orientation and mean stress[J]. International Journal of Fatigue, 2020, 138: 105696. doi: 10.1016/j.ijfatigue.2020.105696
|
Laursen C M, Dejong S A, Dickens S M, et al. Relationship between ductility and the porosity of additively manufactured AlSi10Mg[J]. Materials Science & Engineering: A, 2020, 795: 139922.
|
Ngnekou J N D, Nadot Y, Henaff G, et al. Fatigue properties of AlSi10Mg produced by additive layer manufacturing[J]. International Journal of Fatigue, 2019, 119: 160 − 172. doi: 10.1016/j.ijfatigue.2018.09.029
|
Romano S, Brueckner-Foit A, Brandao A, et al. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength[J]. Engineering Fracture Mechanics, 2018, 187: 165 − 189. doi: 10.1016/j.engfracmech.2017.11.002
|
Wu S C, Liu Y X, Kang G Z, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176 − 191. doi: 10.1016/j.engfracmech.2018.04.046
|
Liu R Q, Kumar A, Chen Z Z, et al. A predictive machine learning approach for microstructure optimization and materials design[J]. Scientific Reports, 2015, 5(1): 11551. doi: 10.1038/srep11551
|
Zhang X C, Gong J G, Xuan F Z. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions[J]. International Journal of Fatigue, 2021, 148: 106236. doi: 10.1016/j.ijfatigue.2021.106236
|
Han Y L, Liu X, Dai S H. Fatigue life calculation of flawed structures - based on artificial neural network with special learning set[J]. International Journal of Pressure Vessels & Piping, 1998, 75(3): 263 − 269.
|
He L, Wang Z L, Akebono H, et al. Machine learning-based predictions of fatigue life and fatigue limit for steels[J]. Journal of Materials Science & Technology, 2021, 90: 9 − 19.
|
Zhang M, Sun C N, Zhang X, et al. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach[J]. International Journal of Fatigue, 2019, 128: 105194. doi: 10.1016/j.ijfatigue.2019.105194
|
Luo Y W, Zhang B, Feng X, et al. Pore-affected fatigue life scattering and prediction of additively manufactured Inconel 718: An investigation based on miniature specimen testing and machine learning approach[J]. Materials Science & Engineering: A, 2021, 802: 140693.
|
Bao H Y X, Wu S C, Wu Z K, et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 242: 107508. doi: 10.1016/j.engfracmech.2020.107508
|
Zhu C P, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning[J]. Journal of Materials Research & Technology, 2021, 11: 2336 − 2353.
|
Ivanna B, Oleksandr S, Kristian M. Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: A conceptual framework[J]. Procedia CIRP, 2018, 67: 227 − 232. doi: 10.1016/j.procir.2017.12.204
|
Long X Y, Zhao S K, Jiang C, et al. Deep learning-based planar crack damage evaluation using convolutional neural networks[J]. Engineering Fracture Mechanics, 2021, 246: 107604. doi: 10.1016/j.engfracmech.2021.107604
|
Andrea R, Michael D S, Henry P, et al. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials[J]. Npj Computational Materials, 2018, 4(1): 963 − 977.
|
Kusoglu I M, Bilal G, Stephan B. Research trends in laser powder bed fusion of Al alloys within the last decade[J]. Additive Manufacturing, 2020, 36: 101489. doi: 10.1016/j.addma.2020.101489
|
Li P Y, Zheng W D, Tang P J. Recent developments in aluminum alloy powders for selective laser melting[C]//2018 World Congress on Powder Metallurgy. Beijing, China, 2018: 1004 − 1014.
|
黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142 − 23152. doi: 10.11896/cldb.20060035
Huang Jianguo, Ren Shubin. Research status and prospect of aluminum alloy manufactured by selective laser melting[J]. Materials Reports, 2021, 35(23): 23142 − 23152. doi: 10.11896/cldb.20060035
|
梁立业, 曾献杰, 薛博宇. 稀土铒元素增强SLM专用AlSi10Mg铝合金粉末及其应用: CN201810421660.5[P]. 2018 − 05 − 04.
Liang Liye, Zeng Xianjie, Xue Boyu, et al. AlSi10Mg aluminum alloy powder for SLM reinforced by erbium element and its application: CN201810421660.5 [P]. 2018 − 05 − 04.
|
崔丽, 杨天野, 聂祚仁, 等. 一种AlSi10Mg粉末及激光选区熔化制造工艺: CN202011623507.4[P]. 2020 − 02 − 31.
Cui Li, Yang Tianye, Nie Zuoren, et al. A manufacturing process of AlSi10Mg powder and selective laser melting: CN202011623507.4 [P]. 2020 − 02 − 31.
|
陆皓, 李相洋, 余志远, 等. 一种激光选区熔化铝合金及增材制造方法: CN202011551875.2[P]. 2020 − 12 − 24.
Lu Hao, Li Xiangyang, Yu Zhiyuan, et al. A selective laser melting aluminum alloy and additive manufacturing method: CN202011551875.2 [P]. 2020 − 12 − 24.
|
夏玉峰, 张雪, 廖海龙, 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能[J]. 焊接学报, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001
Xia Yufeng, Zhang Xue, Liao Hailong, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001
|
Della G R, Del S I, Caraviello A, et al. Selective laser melting of an Al-Si-Mg-Cu alloy: Feasibility and processing aspects[J]. Materials & Manufacturing Processes, 2021, 36(12): 1438 − 1449.
|
Aversa A, Lorusso M, Cattano G, et al. A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting[J]. Journal of Alloys & Compounds, 2017, 695: 1470 − 1478.
|
Boillat R, Isanaka S P, Liou F. The effect of nanostructures in aluminum alloys processed using additive manufacturing on microstructural evolution and mechanical performance behavior[J]. Crystals, 2021, 11(5): 524. doi: 10.3390/cryst11050524
|
Lin T C, Cao C Z, Sokoluk M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing[J]. Nature Communications, 2019, 10(1): 4124. doi: 10.1038/s41467-019-12047-2
|
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365 − 369. doi: 10.1038/nature23894
|
[1] | SUN Jiahao, ZHANG Chaoyong, WU Jianzhao, ZHANG Shuaikun, ZHU Lei. Prediction of weld profile of 316L stainless steel based on generalized regression neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 40-47. DOI: 10.12073/j.hjxb.20210526003 |
[2] | LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001 |
[3] | ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046 |
[4] | XUE Jiaxiang, JIANG Chengfeng, ZHANG Xiaoli, ZHU Xiaojun, ZHU Qiang. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 75-78. |
[5] | LIN Naichang, YANG Xiaoxiang, LIN Wen-jian, ZHU Zhibin. Defect detection of TOFD D scanning image based on parabola Htting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 105-108. |
[6] | ZHU Xiaopeng, ZHANG Ke, TU Zhiqiang, HUANG Jie. Calibration of relative position and orientation between robot and positioner based on spheres fitting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 41-44. |
[7] | QIN Tao, ZHANG Ke, DENG Jingyu, JIN Xin. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 33-36. |
[8] | ZHANG Ke, WU Yixiong, LV Xueqin, JIN Xin. Real-time identification of heading angle based on least squares estimator for welding mobile robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 13-16. |
[9] | LI Ruihua, MENG Guoxiang, GONG Liang, ZHANG Ke. Partial least square approach for multi-parameter assessment of resistance spot welding quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 49-52. |
[10] | CAI Yan, YANG Hai-lan, XU Xin, WU Yi-xiong. Spatter model of CO2 arc welding based on partial least-square regression method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 125-128. |