Advanced Search
AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002
Citation: AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002

Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy

More Information
  • Received Date: April 12, 2022
  • Available Online: September 01, 2022
  • Additive manufacturing is an advanced near net forming technology for advanced metal components developed in recent decades. With the unique advantages of low energy consumption, short cycle, high flexibility and low cost, metal additive manufacturing has become one of the most advanced cutting-edge processing technologies in the field of large-scale key engineering equipment. Compared with traditional casting, the comparable or better mechanical properties are obtained for additive manufacturing aluminum alloys. However, the problems of lacking relevant quality assessment standards and the large dispersion of fatigue strength seriously limit its wide application in key metal equipment. The AlSi10Mg alloy formed by selective laser melting is focused in the present study as the model material. From the perspective viewpoint of " manufacturing process-numerical simulation-performance evaluation", the effects of several important factors such as process parameters, building orientation and heat treatment on the microstructure and mechanical properties of aluminum alloy in additive manufacturing process are analyzed systematically. The research status of the thermodynamic process simulation of additive manufacturing and the simulation of mechanical properties is summarized. This paper focuses on the current domestic and abroad research progress in mechanical property evaluation of additive manufacturing aluminum alloy. Further, the research on improving mechanical properties of aluminum alloy based on component regulation is concluded. Finally, its development trend is prospected.
  • 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 − 2698.
    龚淼, 戴士杰, 王志平, 等. 航空压气机叶片增材修复最优热输入分析[J]. 焊接学报, 2020, 41(8): 39 − 47,99. doi: 10.12073/j.hjxb.20200602001

    Gong Miao, Dai Shijie, Wang Zhiping, et al. Research on optimal heat input for blade repair of aero compressor[J]. Transactions of the China Welding Institution, 2020, 41(8): 39 − 47,99. doi: 10.12073/j.hjxb.20200602001
    林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245

    Lin Xin, Huang Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245
    张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918 − 926. doi: 10.11900/0412.1961.2016.00472

    Zhang Wenqi, Zhu Haihong, Hu Zhiheng, et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 2017, 53(8): 918 − 926. doi: 10.11900/0412.1961.2016.00472
    张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(1): 39 − 55. doi: 10.7502/j.issn.1674-3962.2013.01.04

    Zhang Xinming, Liu Shengdan. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(1): 39 − 55. doi: 10.7502/j.issn.1674-3962.2013.01.04
    陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128,134. doi: 10.12073/j.hjxb.2018390214

    Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128,134. doi: 10.12073/j.hjxb.2018390214
    洪恩航, 刘美红, 黎振华. 基于开源切片路径规划的机器人电弧增材制造系统[J]. 焊接学报, 2021, 42(11): 65 − 69. doi: 10.12073/j.hjxb.20210312004

    Hong Enhang, Liu Meihong, Li Zhenhua. Development of wire arc additive manufacturing robotic system based on open source slicing software for path planning[J]. Transactions of the China Welding Institution, 2021, 42(11): 65 − 69. doi: 10.12073/j.hjxb.20210312004
    张兆栋, 曾庆文, 刘黎明, 等. 铝合金激光诱导MIG电弧增材制造成形尺寸规律[J]. 焊接学报, 2019, 40(8): 7 − 12.

    Zhang Zhaodong, Zeng Qingwen, Liu Liming, et al. Forming regularity of aluminum alloy formed by laser induced MIG arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(8): 7 − 12.
    樊丁, 李楠, 黄健康, 等. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279

    Fan Ding, Li Nan, Huang Jiankang, et al. Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment[J]. Transactions of the China Welding Institution, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279
    Uzan N E, Shneck R, Yeheskel O, et al. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM)[J]. Materials Science & Engineering:A, 2017, 704: 229 − 237.
    Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809 − 1819. doi: 10.1016/j.actamat.2012.11.052
    Tang M, Pistorius P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2017, 94: 192 − 201. doi: 10.1016/j.ijfatigue.2016.06.002
    Kempen K, Thijs L, Humbeeck J V. Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation[J]. Materials Science & Technology, 2015, 31(8): 917 − 923.
    Leary M, Mazur M, Elambasseril J, et al. Selective laser melting (SLM) of AlSi12Mg lattice structures[J]. Materials & Design, 2016, 98: 344 − 357.
    Kaufmann N, Imran M, Wischeropp T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918 − 926. doi: 10.1016/j.phpro.2016.08.096
    Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Materials & Design, 2015, 65: 417 − 424.
    Rakesh C S, Priyanka N, Jayaganthan R, et al. Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting[J]. Materials Today: Proceedings, 2018, 5(9): 17231 − 17238. doi: 10.1016/j.matpr.2018.04.133
    Zaretsky E, Stern A, Frage N, et al. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting[J]. Materials Science & Engineering: A, 2017, 688: 364 − 370.
    Jawade S A, Joshi R S, Desai S B. Comparative study of mechanical properties of additively manufactured aluminum alloy[J]. Materials Today: Proceedings, 2021, 46(19): 9270 − 9274.
    吴正凯. 基于缺陷三维成像的增材铝合金各向异性疲劳性能评价[D]. 成都: 西南交通大学, 2020.

    Wu Zhengkai. Evaluation of anisotropic fatigue performance of additively manufactured aluminium alloy based on 3D X-ray computed tomography of defects [D]. Chengdu: Southwest Jiaotong University, 2020.
    余开斌, 刘允中, 杨长毅. 热处理对选区激光熔化成形AlSi10Mg合金显微组织及力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 298 − 305. doi: 10.3969/j.issn.1673-0224.2018.03.010

    Yu Kaibin, Liu Yunzhong, Yang Changyi. Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 298 − 305. doi: 10.3969/j.issn.1673-0224.2018.03.010
    董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015, 35(5): 607 − 611. doi: 10.14128/j.cnki.al.20153505.607

    Dong Peng, Li Zhonghua, Yan Zhenyu, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607 − 611. doi: 10.14128/j.cnki.al.20153505.607
    廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3): 648 − 701. doi: 10.6052/1000-0992-21-037

    Lian Yanping, Wang Panding, Gao Jie, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review[J]. Advances in Mechanics, 2021, 51(3): 648 − 701. doi: 10.6052/1000-0992-21-037
    Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270 − 284.
    宋哲. 选区激光熔化钛合金的缺陷容限评价方法[D]. 成都: 西南交通大学, 2019.

    Song Zhe. Evaluation method of defect tolerance of selective laser melting titanium alloy[D]. Chengdu: Southwest Jiaotong University, 2019.
    王凯, 焦向东, 朱加雷, 等. 激光功率密度对SLM成形TC4磨损性能的影响[J]. 焊接学报, 2020, 41(5): 61 − 64. doi: 10.12073/j.hjxb.20190926001

    Wang Kai, Jiao Xiangdong, Zhu Jialei, et al. Effect of laser power density on wear resistance of TC4 alloy manufactured by SLM[J]. Transactions of the China Welding Institution, 2020, 41(5): 61 − 64. doi: 10.12073/j.hjxb.20190926001
    Chen J, Hou W, Wang X Z, et al. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg[J]. Chinese Journal of Aeronautics, 2020, 33(7): 2043 − 2054. doi: 10.1016/j.cja.2019.08.017
    Aboulkhair N T, Everitt N M, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1: 77 − 86.
    Wu H H, Li J F, Wei Z Y, et al. Effect of processing parameters on forming defects during selective laser melting of AlSi10Mg powder[J]. Rapid Prototyping Journal, 2020, 26(5): 871 − 879. doi: 10.1108/RPJ-07-2018-0184
    Fiegl T, Franke M, Koerner C, et al. Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg[J]. Optics & Laser Technology, 2019, 111: 51 − 57.
    Jiang X H, Ye T, Zhu Y H. Effect of process parameters on residual stress in selective laser melting of AlSi10Mg[J]. Materials Science & Technology, 2020, 36(3): 342 − 352.
    Biffi C A, Fiocchi J, Tuissi A. Selective laser melting of AlSi10 Mg: Influence of process parameters on Mg2Si precipitation and Si spheroidization[J]. Journal of Alloys & Compounds, 2018, 755: 100 − 107.
    蔡笑宇, 董博伦, 殷宪铼, 等. 预热温度对GTA增材制造钛铝合金组织及性能的影响[J]. 焊接学报, 2021, 42(10): 14 − 21.

    Cai Xiaoyu, Dong Bolun, Yin Xianlai, et al. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. Transactions of the China Welding Institution, 2021, 42(10): 14 − 21.
    Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34: 159 − 169.
    Trevisan F, Calignano F, Lorusso M. On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties[J]. Materials, 2017, 10(1): 76. doi: 10.3390/ma10010076
    Jian Z M, Qian G A, Paolino D S, et al. Crack initiation behavior and fatigue performance up to very-high-cycle regime of AlSi10Mg fabricated by selective laser melting with two powder sizes[J]. International Journal of Fatigue, 2021, 143: 106013. doi: 10.1016/j.ijfatigue.2020.106013
    Biffi C A, Fiocchi J, Bassani P, et al. Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: Microstructure and mechanical behaviour[J]. Additive Manufacturing, 2018, 24: 639 − 646. doi: 10.1016/j.addma.2018.10.021
    Ahmad B A, Pham Q C. Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing & Technology, 2017, 240: 388 − 396.
    杨义成, 黄瑞生, 孙谦, 等. 激光送粉增材制造光粉交互作用机制分析[J]. 焊接学报, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290

    Yang Yicheng, Huang Ruisheng, Sun Qian, et al. Mechanism analysis of interaction between laser and particles in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290
    Hitzler L, Janousch C, Schanz J, et al. Direction and location dependency of selective laser melted AlSi10Mg specimens[J]. Journal of Materials Processing Technology, 2017, 243: 48 − 61. doi: 10.1016/j.jmatprotec.2016.11.029
    Maconachie T, Leary M, Zhang J J, et al. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg[J]. Materials Science & Engineering: A, 2020, 788: 139445.
    Kempen K, Thijs L, Humbeeck J V, et al. Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Physics Procedia, 2012, 39: 439 − 446. doi: 10.1016/j.phpro.2012.10.059
    Rosenthal I, Stern A, Frage N, et al. Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology[J]. Metallography, Microstructure, and Analysis, 2014, 3(6): 448 − 453.
    Hitzler L, Schoch N, Heine B, et al. Compressive behaviour of additively manufactured AlSi10Mg[J]. Materialwissenschaft und Werkstofftechnik, 2018, 49(5): 683 − 688. doi: 10.1002/mawe.201700239
    Hitzler L, Hirsch J, Schanz J, et al. Fracture toughness of selective laser melted AlSi10Mg[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(4): 615 − 621.
    Bar N, Moshe N, Adin S, et al. Study on the dynamic properties of AM-SLM AlSi10Mg alloy using the Split Hopkinson Pressure Bar (SHPB) technique[J]. EPJ Web of Conferences, 2018, 183: 04005. doi: 10.1051/epjconf/201818304005
    Xu Z W, Liu A, Wang X S, et al. Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions[J]. Materials Science & Engineering: A, 2021, 812: 141141.
    Wu Z K, Wu S C, Bao J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2021, 151: 106317. doi: 10.1016/j.ijfatigue.2021.106317
    Beretta S, Gargourimotlagh M, Foletti S, et al. Fatigue strength assessment of "as built" AlSi10Mg manufactured by SLM with different build orientations[J]. International Journal of Fatigue, 2020, 139: 105737. doi: 10.1016/j.ijfatigue.2020.105737
    Nezhadfar P D, Thompson S, Saharan A, et al. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior[J]. Additive Manufacturing, 2021, 47: 102292. doi: 10.1016/j.addma.2021.102292
    Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science & Engineering: A, 2016, 663: 116 − 125.
    Wang L F, Sun J, Zhu X G, et al. Effects of T2 heat treatment on microstructure and properties of the selective laser melted aluminum alloy samples[J]. Materials, 2018, 11(1): 66. doi: 10.3390/ma11010066
    Casati R, Hamidi N M, Coduri M, et al. Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting[J]. Metals, 2018, 8(11): 954. doi: 10.3390/met8110954
    Rosenthal I, Nahmany M, Stern A, et al. Structure and mechanical properties of AlSi10Mg fabricated by selective laser melting additive manufacturing (SLM-AM)[J]. Advanced Materials Research, 2015, 1111: 62 − 66. doi: 10.4028/www.scientific.net/AMR.1111.62
    Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering: A, 2016, 667: 139 − 146.
    Tridello A, Fiocchi J, Biffi C A, et al. Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(12): 2794 − 2807.
    Larrosa N O, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy[J]. Theoretical & Applied Fracture Mechanics, 2018, 98: 123 − 133.
    Finfrock C B, Exil A, Carroll J D, et al. Effect of hot isostatic pressing and powder feedstock on porosity, microstructure, and mechanical properties of selective laser melted AlSi10Mg[J]. Metallography, Microstructure, and Analysis, 2018, 7(4): 443 − 456.
    Zhang C C, Zhu H H, Liao H L, et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg[J]. International Journal of Fatigue, 2018, 116: 513 − 522. doi: 10.1016/j.ijfatigue.2018.07.016
    Han Q Q, Jiao Y. Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(9-12): 3315 − 3324. doi: 10.1007/s00170-018-03272-y
    张弛, 沈忱, 李芳, 等. 铝合金熔丝增材制造表面平整度研究[J]. 电焊机, 2020, 50(2): 53 − 57. doi: 10.7512/j.issn.1001-2303.2020.02.11

    Zhang Chi, Shen Chen, Li Fang, et al. Study on surface flatness of aluminum alloy by wire arc additive manufacturing(WAAM)[J]. Electric Welding Machine, 2020, 50(2): 53 − 57. doi: 10.7512/j.issn.1001-2303.2020.02.11
    唐琪, 陈静青, 陈鹏, 等. 基于有限元的激光增材过程熔化热积累模拟[J]. 焊接学报, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189

    Tang Qi, Chen Jingqing, Chen Peng, et al. Finite element simulation of melting heat accumulation in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189
    Li Z H, Li B Q, Bai P K, et al. Research on the thermal behaviour of a selectively laser melted aluminium alloy: Simulation and experiment[J]. Materials, 2018, 11(7): 1172. doi: 10.3390/ma11071172
    Ding X P, Wang L Z. Heat transfer and fluid flow of molten pool during selective laser melting of AlSi10Mg powder: Simulation and experiment[J]. Journal of Manufacturing Processes, 2017, 26: 280 − 289. doi: 10.1016/j.jmapro.2017.02.009
    Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63: 856 − 867.
    Liu S W, Zhu H H, Peng G Y, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142: 319 − 328.
    Hu H W, Ding X P, Wang L Z. Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg[J]. Optik - International Journal for Light & Electron Optics, 2016, 127(20): 8883 − 8891.
    Nadot Y, Nadot-Martin C, Kan W H, et al. Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography[J]. Additive Manufacturing, 2020, 32: 100899. doi: 10.1016/j.addma.2019.100899
    Wang P D, Lei H S, Zhu X L, et al. Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Alloys & Compounds, 2019, 789: 852 − 859.
    Wang P D, Zhou H, Zhang L M, et al. In situ X-ray micro-computed tomography study of the damage evolution of prefabricated through-holes in SLM-Printed AlSi10Mg alloy under tension[J]. Journal of Alloys & Compounds, 2020, 821: 153576.
    Amani Y, Dancette S, Delroisse P, et al. Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element up approaches[J]. Acta Materialia, 2018, 159: 395 − 407. doi: 10.1016/j.actamat.2018.08.030
    Li Z H, Nie Y F, Liu B, et al. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting[J]. Materials & Design, 2020, 192: 108709.
    Zhang W J, Hu Y Y, Ma X F, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling[J]. International Journal of Fatigue, 2021, 145: 106109. doi: 10.1016/j.ijfatigue.2020.106109
    Subbiah R, Bensingh J, Kader A, et al. Influence of printing parameters on structures, mechanical properties and surface characterization of aluminium alloy manufactured using selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(11-12): 5137 − 5147. doi: 10.1007/s00170-020-04929-3
    Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue, 2017, 94: 178 − 191. doi: 10.1016/j.ijfatigue.2016.06.020
    Daniewicz S R, Shamsaei N. An introduction to the fatigue and fracture behavior of additive manufactured parts[J]. International Journal of Fatigue, 2017, 94: 167. doi: 10.1016/j.ijfatigue.2016.07.007
    Leuders S, Thone M, Riemer A, et al. On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2018, 48: 300 − 307.
    虞雨洭, 吴正凯, 吴圣川. 高分辨三维成像原位试验机研制进展及应用[J]. 中国材料进展, 2021, 40(2): 90 − 104. doi: 10.7502/j.issn.1674-3962.202007031

    Yu Yukuang, Wu Zhengkai, Wu Shengchuan. Development and application of in-situ testing machines based on high resolution three-dimensional tomography[J]. Materials China, 2021, 40(2): 90 − 104. doi: 10.7502/j.issn.1674-3962.202007031
    Xie C, Wu S C, Yu Y K, et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling[J]. Journal of Materials Processing Technology, 2021, 291: 117039. doi: 10.1016/j.jmatprotec.2020.117039
    吴圣川, 吴正凯, 谢成, 等. 基于X射线成像的大载荷高频率原位拉伸和疲劳试验机: CN201910210664.3[P]. 2019 − 03 − 20.

    Wu Shengchuan, Wu Zhengkai, Xie Zheng, et al. Large load high frequency in situ tensile and fatigue testing machine based on X-ray imaging: CN201910210664.3[P]. 2019 − 03 − 20.
    吴圣川, 吴正凯, 康国政, 等. 先进材料多维多尺度高通量表征研究进展[J]. 机械工程学报, 2021, 57(16): 37 − 65. doi: 10.3901/JME.2021.16.037

    Wu Shengchuan, Wu Zhengkai, Kang Guozheng, et al. Research progress on multi-dimensional and multi-scale high-throughput characterization for advanced materials[J]. Journal of Mechanical Engineering, 2021, 57(16): 37 − 65. doi: 10.3901/JME.2021.16.037
    Bao J G, Wu S C, Withers P J, et al. Defect evolution during high temperature tension-tension fatigue of SLM AISi10Mg alloy by synchrotron tomography[J]. Materials Science & Engineering: A, 2020, 792: 139809.
    Bao J G, Wu Z K, Wu S C, et al. Hot dwell-fatigue behaviour of additively manufactured AlSi10Mg alloy: Relaxation, cyclic softening and fracture mechanisms[J]. International Journal of Fatigue, 2021, 151: 106408. doi: 10.1016/j.ijfatigue.2021.106408
    Haboub A, Bale H A, Nasiatka J R, et al. Tensile testing of materials at high temperatures above 1700 ℃ with in situ synchrotron X-ray micro-tomography[J]. The Review of Scientific Instruments, 2014, 85(8): 083702. doi: 10.1063/1.4892437
    Sloof W G, Pei R Z, Mcdonald S A, et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy[J]. Scientific Reports, 2016, 6(1): 23040. doi: 10.1038/srep23040
    Puncreobutr C, Lee P D, Hamilton R W, et al. Synchrotron tomographic characterization of damage evolution during aluminum alloy solidification[J]. Metallurgical and Materials Transactions A, 2013, 44(12): 5389 − 5395. doi: 10.1007/s11661-012-1563-0
    Terzi S, Salvo L, Suery M, et al. In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys[J]. Scripta Materialia, 2009, 61(5): 449 − 452. doi: 10.1016/j.scriptamat.2009.04.041
    Suery M, Terzi S, Mireux B, et al. Fast in situ X-ray microtomography observations of solidification and semisolid deformation of Al-Cu alloys[J]. Journal of Materials Science, 2012, 64(1): 83 − 88. doi: 10.1007/s11837-011-0219-7
    Wang Z Y, Wu S C, Kang G Z, et al. In-situ synchrotron X-ray tomography investigation of damage mechanism of an extruded magnesium alloy in uniaxial low-cycle fatigue with ratchetting[J]. Acta Materialia, 2021, 211: 116881. doi: 10.1016/j.actamat.2021.116881
    Wu S C, Song Z, Kang G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography[J]. International Journal of Fatigue, 2019, 125: 210 − 221. doi: 10.1016/j.ijfatigue.2019.04.002
    Messager A, Junet A, Palin-Luc T, et al. In situ synchrotron ultrasonic fatigue testing device for 3D characterisation of internal crack initiation and growth[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(3): 558 − 567.
    Wu S C, Xiao T Q, Withers P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography[J]. Engineering Fracture Mechanics, 2017, 182: 127 − 156. doi: 10.1016/j.engfracmech.2017.07.027
    Wu S C, Yu C, Yu P S, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science & Engineering: A, 2016, 651: 604 − 614.
    Teranishi M, Kuwazuru O, Gennai S, et al. Three-dimensional stress and strain around real shape Si particles in cast aluminum alloy under cyclic loading[J]. Materials Science & Engineering: A, 2016, 678: 273 − 285.
    Qu P, Toda H, Zhang H, et al. Local crack driving force analysis of a fatigue crack by a microstructural tracking method[J]. Scripta Materialia, 2009, 61(5): 489 − 492. doi: 10.1016/j.scriptamat.2009.05.004
    Hu Y N, Ao N, Wu S C, et al. Influence of in situ micro-rolling on the improved strength and ductility of hybrid additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 253: 107868. doi: 10.1016/j.engfracmech.2021.107868
    Zhang B, Huang H M, Wu S C, et al. In-situ X-ray tomography on permeability evolution of C/SiC porous ceramic for hypersonic vehicles[J]. Ceramics International, 2021, 47(19): 27770 − 27777. doi: 10.1016/j.ceramint.2021.06.204
    吴圣川, 吴正凯, 鲍泓翊玺, 等. 基于先进光源原位成像的超高周疲劳损伤试验系统: CN201910523647.5[P]. 2019 − 06 − 17.

    Wu Shengchuan, Wu Zhengkai, Bao Hongyixi, et al. Ultra-high cycle fatigue damage test system based on advanced light source in situ imaging: CN201910523647.5 [P]. 2019 − 06 − 17.
    吴圣川, 谢成, 吴正凯, 等. 一种采用X射线三维成像的悬臂式旋转弯曲原位疲劳试验机: CN201810852157.5[P]. 2018 − 07 − 30.

    Wu Shengchuan, Xie Cheng, Wu Zhengkai, et al. A cantilever rotating bending in situ fatigue testing machine using X-ray 3D imaging: CN201810852157.5 [P]. 2018 − 07 − 30.
    Kan W H, Chiu L N S, Lim C V S, et al. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion[J]. Journal of Materials Science, 2022, 57: 9818 − 9865. doi: 10.1007/s10853-022-06990-7
    Murakami Y, Takagi T, Wada K, et al. Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter[J]. International Journal of Fatigue, 2021, 146: 106138. doi: 10.1016/j.ijfatigue.2020.106138
    Qian G A, Jian Z M, Qian Y J, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selective laser melting: Effect of build orientation and mean stress[J]. International Journal of Fatigue, 2020, 138: 105696. doi: 10.1016/j.ijfatigue.2020.105696
    Laursen C M, Dejong S A, Dickens S M, et al. Relationship between ductility and the porosity of additively manufactured AlSi10Mg[J]. Materials Science & Engineering: A, 2020, 795: 139922.
    Ngnekou J N D, Nadot Y, Henaff G, et al. Fatigue properties of AlSi10Mg produced by additive layer manufacturing[J]. International Journal of Fatigue, 2019, 119: 160 − 172. doi: 10.1016/j.ijfatigue.2018.09.029
    Romano S, Brueckner-Foit A, Brandao A, et al. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength[J]. Engineering Fracture Mechanics, 2018, 187: 165 − 189. doi: 10.1016/j.engfracmech.2017.11.002
    Wu S C, Liu Y X, Kang G Z, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176 − 191. doi: 10.1016/j.engfracmech.2018.04.046
    Liu R Q, Kumar A, Chen Z Z, et al. A predictive machine learning approach for microstructure optimization and materials design[J]. Scientific Reports, 2015, 5(1): 11551. doi: 10.1038/srep11551
    Zhang X C, Gong J G, Xuan F Z. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions[J]. International Journal of Fatigue, 2021, 148: 106236. doi: 10.1016/j.ijfatigue.2021.106236
    Han Y L, Liu X, Dai S H. Fatigue life calculation of flawed structures - based on artificial neural network with special learning set[J]. International Journal of Pressure Vessels & Piping, 1998, 75(3): 263 − 269.
    He L, Wang Z L, Akebono H, et al. Machine learning-based predictions of fatigue life and fatigue limit for steels[J]. Journal of Materials Science & Technology, 2021, 90: 9 − 19.
    Zhang M, Sun C N, Zhang X, et al. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach[J]. International Journal of Fatigue, 2019, 128: 105194. doi: 10.1016/j.ijfatigue.2019.105194
    Luo Y W, Zhang B, Feng X, et al. Pore-affected fatigue life scattering and prediction of additively manufactured Inconel 718: An investigation based on miniature specimen testing and machine learning approach[J]. Materials Science & Engineering: A, 2021, 802: 140693.
    Bao H Y X, Wu S C, Wu Z K, et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 242: 107508. doi: 10.1016/j.engfracmech.2020.107508
    Zhu C P, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning[J]. Journal of Materials Research & Technology, 2021, 11: 2336 − 2353.
    Ivanna B, Oleksandr S, Kristian M. Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: A conceptual framework[J]. Procedia CIRP, 2018, 67: 227 − 232. doi: 10.1016/j.procir.2017.12.204
    Long X Y, Zhao S K, Jiang C, et al. Deep learning-based planar crack damage evaluation using convolutional neural networks[J]. Engineering Fracture Mechanics, 2021, 246: 107604. doi: 10.1016/j.engfracmech.2021.107604
    Andrea R, Michael D S, Henry P, et al. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials[J]. Npj Computational Materials, 2018, 4(1): 963 − 977.
    Kusoglu I M, Bilal G, Stephan B. Research trends in laser powder bed fusion of Al alloys within the last decade[J]. Additive Manufacturing, 2020, 36: 101489. doi: 10.1016/j.addma.2020.101489
    Li P Y, Zheng W D, Tang P J. Recent developments in aluminum alloy powders for selective laser melting[C]//2018 World Congress on Powder Metallurgy. Beijing, China, 2018: 1004 − 1014.
    黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142 − 23152. doi: 10.11896/cldb.20060035

    Huang Jianguo, Ren Shubin. Research status and prospect of aluminum alloy manufactured by selective laser melting[J]. Materials Reports, 2021, 35(23): 23142 − 23152. doi: 10.11896/cldb.20060035
    梁立业, 曾献杰, 薛博宇. 稀土铒元素增强SLM专用AlSi10Mg铝合金粉末及其应用: CN201810421660.5[P]. 2018 − 05 − 04.

    Liang Liye, Zeng Xianjie, Xue Boyu, et al. AlSi10Mg aluminum alloy powder for SLM reinforced by erbium element and its application: CN201810421660.5 [P]. 2018 − 05 − 04.
    崔丽, 杨天野, 聂祚仁, 等. 一种AlSi10Mg粉末及激光选区熔化制造工艺: CN202011623507.4[P]. 2020 − 02 − 31.

    Cui Li, Yang Tianye, Nie Zuoren, et al. A manufacturing process of AlSi10Mg powder and selective laser melting: CN202011623507.4 [P]. 2020 − 02 − 31.
    陆皓, 李相洋, 余志远, 等. 一种激光选区熔化铝合金及增材制造方法: CN202011551875.2[P]. 2020 − 12 − 24.

    Lu Hao, Li Xiangyang, Yu Zhiyuan, et al. A selective laser melting aluminum alloy and additive manufacturing method: CN202011551875.2 [P]. 2020 − 12 − 24.
    夏玉峰, 张雪, 廖海龙, 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能[J]. 焊接学报, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001

    Xia Yufeng, Zhang Xue, Liao Hailong, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001
    Della G R, Del S I, Caraviello A, et al. Selective laser melting of an Al-Si-Mg-Cu alloy: Feasibility and processing aspects[J]. Materials & Manufacturing Processes, 2021, 36(12): 1438 − 1449.
    Aversa A, Lorusso M, Cattano G, et al. A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting[J]. Journal of Alloys & Compounds, 2017, 695: 1470 − 1478.
    Boillat R, Isanaka S P, Liou F. The effect of nanostructures in aluminum alloys processed using additive manufacturing on microstructural evolution and mechanical performance behavior[J]. Crystals, 2021, 11(5): 524. doi: 10.3390/cryst11050524
    Lin T C, Cao C Z, Sokoluk M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing[J]. Nature Communications, 2019, 10(1): 4124. doi: 10.1038/s41467-019-12047-2
    Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365 − 369. doi: 10.1038/nature23894
  • Related Articles

    [1]SUN Jiahao, ZHANG Chaoyong, WU Jianzhao, ZHANG Shuaikun, ZHU Lei. Prediction of weld profile of 316L stainless steel based on generalized regression neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 40-47. DOI: 10.12073/j.hjxb.20210526003
    [2]LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001
    [3]ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046
    [4]XUE Jiaxiang, JIANG Chengfeng, ZHANG Xiaoli, ZHU Xiaojun, ZHU Qiang. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 75-78.
    [5]LIN Naichang, YANG Xiaoxiang, LIN Wen-jian, ZHU Zhibin. Defect detection of TOFD D scanning image based on parabola Htting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 105-108.
    [6]ZHU Xiaopeng, ZHANG Ke, TU Zhiqiang, HUANG Jie. Calibration of relative position and orientation between robot and positioner based on spheres fitting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 41-44.
    [7]QIN Tao, ZHANG Ke, DENG Jingyu, JIN Xin. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 33-36.
    [8]ZHANG Ke, WU Yixiong, LV Xueqin, JIN Xin. Real-time identification of heading angle based on least squares estimator for welding mobile robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 13-16.
    [9]LI Ruihua, MENG Guoxiang, GONG Liang, ZHANG Ke. Partial least square approach for multi-parameter assessment of resistance spot welding quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 49-52.
    [10]CAI Yan, YANG Hai-lan, XU Xin, WU Yi-xiong. Spatter model of CO2 arc welding based on partial least-square regression method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 125-128.

Catalog

    Article views (691) PDF downloads (161) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return