Advanced Search
ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001
Citation: ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001

Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting

More Information
  • Received Date: December 10, 2019
  • Available Online: September 26, 2020
  • Microstructure and high temperature creep properties of laser welded joints of Inconel 625 alloy fabricated by selective laser melting (SLM) method were investigated using optical microscope, scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometer. The results show that the quality of laser welded joints of Inconel 625 alloy by SLM is superior, and no obvious manufacturing defects are found. The microstructure of the laser welded Inconel 625 alloy by SLM specimen is mainly composed of the austenitic in the base metal and columnar dendrites in the fusion zone. High temperature creep test results show that the creep time of the alloy drops sharply with the increase of the applied stress level. The higher stress level (200 MPa) has a great influence on the creep property of the alloy at the same temperature, which will lead to the creep deformation directly entering the third stage of creep - acceleration stage, and cause the sample to fracture earlier. The mechanism of creep failure was discussed by analyses of the fracture surface. It is found that the fracture of all specimens occurred in the base metal or near the heat-affected zone. A large number of secondary cracks were observed in the base metal, while no obvious cracks were found in the fusion zone. Also, the fracture morphology is characterized by a rock candy pattern, indicating the intergranular fracture mode. The deformation displacement induced by the grain boundary slipping at elevated temperature is the principal mechanism of the cavity nucleation.
  • Maj P, Koralnik M, Adamczyk-Cieslak B, et al. Mechanical properties and microstructure of Inconel 625 cylinders used in aerospace industry subjected to flow forming with laser and standard heat treatment[J]. International Journal of Material Forming, 2019, 12(1): 135 − 144. doi: 10.1007/s12289-018-1413-8
    Li C, White R, Fang X Y, et al. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment[J]. Materials Science & Engineering A, 2017, 705: 20 − 31.
    Jafari D, Wits W W. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: a review[J]. Renewable & Sustainable Energy Reviews, 2018, 91: 420 − 442.
    尹燕, 刘鹏宇, 路超, 等. 选区激光熔化成形316L不锈钢微观组织及拉伸性能分析[J]. 焊接学报, 2018, 39(8): 77 − 81. doi: 10.12073/j.hjxb.2018390205

    Yin Yan, Liu Pengyu, Lu Chao, et al. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. Transactions of the China Welding Institution, 2018, 39(8): 77 − 81. doi: 10.12073/j.hjxb.2018390205
    Hu X A, Xue Z Y, Zhao G L, et al. Laser welding of a selective laser melted Ni-base superalloy: microstructure and high temperature mechanical property[J]. Materials Science & Engineering A, 2018, 745: 335 − 345.
    Yang J J, Wang Y, Li F Z, et al. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints[J]. Journal of Materials Science & Technology, 2019, 35(9): 1817 − 1824.
    王金凤, 杨立军, 孙明升, 等. 快速冷却对DP1000双相钢激光焊接接头性能的影响[J]. 焊接学报, 2019, 40(1): 113 − 118. doi: 10.12073/j.hjxb.2019400023

    Wang Jinfeng, Yang Lijun, Sun Mingsheng, et al. Effect of rapid cooling on mechanical properties of welded joint in laser welding of DP1000 dual phase steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 113 − 118. doi: 10.12073/j.hjxb.2019400023
    丁雨田, 孟斌, 高钰璧, 等. 固溶处理对GH3625合金板材组织及性能的影响[J]. 材料导报, 2018, 32(2): 243 − 248. doi: 10.11896/j.issn.1005-023X.2018.02.017

    Ding Yutian, Meng Bin, Gao Yubi, et al. Effect of solution treatment on the microstructure and mechanical properties of GH3625 superalloy sheet[J]. Materials Review, 2018, 32(2): 243 − 248. doi: 10.11896/j.issn.1005-023X.2018.02.017
    Ramkumar K D, Kumar P S G, Radhakrishna V S, et al. Studies on microstructure and mechanical properties of keyhole mode Nd: YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205[J]. Journal of Materials Research, 2015, 30(21): 3288 − 3298. doi: 10.1557/jmr.2015.276
    Li X Q, Hao B X, Chen Y X, et al. The microstructure mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation[J]. China Welding, 2019, 28(2): 29 − 34.
    谢君, 田素贵, 周晓明. FGH95粉末镍基合金组织结构对蠕变机制的影响[J]. 稀有金属材料与工程, 2013, 42(2): 325 − 330. doi: 10.3969/j.issn.1002-185X.2013.02.022

    Xie Jun, Tian Sugui, Zhou Xiaoming. Influence of microstructure on creep mechanism of FGH95 powder Ni-based superalloy[J]. Rare Metal Materials and Engineering, 2013, 42(2): 325 − 330. doi: 10.3969/j.issn.1002-185X.2013.02.022
    谢君, 田素贵, 刘姣, 等. FGH95粉末镍基合金蠕变期间位错网的形成与分析[J]. 金属学报, 2013, 49(7): 838 − 844. doi: 10.3724/SP.J.1037.2012.00710

    Xie Jun, Tian Sugui, Liu Jiao, et al. Formation and analysis of dislocation network of FGH95 powder metallurgy Ni-based superalloy during creep[J]. Acta Metallurgica Sinica, 2013, 49(7): 838 − 844. doi: 10.3724/SP.J.1037.2012.00710
    孙朝阳, 石兵, 武传标, 等. BSTMUF601合金的高温蠕变变形机制[J]. 金属学报, 2015, 51(3): 349 − 356.

    Sun Chaoyang, Shi Bing, Wu Chuanbiao, et al. Deformation mechanism of BSTMUF601 superalloy[J]. Acta Metallurgica Sinica, 2015, 51(3): 349 − 356.
    Tang Y T, Karamched P, Liu J L, et al. Grain boundary serration in nickel alloy Inconel 600: quantification and mechanisms[J]. Acta Materials, 2019, 181: 352 − 366. doi: 10.1016/j.actamat.2019.09.037
    郭建亭, 袁超, 侯介山. 高温合金的蠕变及疲劳-蠕变-环境交互作用规律和机理[J]. 中国有色金属学报, 2011, 21(3): 487 − 504.

    Guo Jianting, Yuan Chao, Hou Jieshan. Creep and creep-fatigue-environment interaction and mechanisms of superalloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 487 − 504.
  • Related Articles

    [1]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003
    [2]HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
    [3]GUO Xiao, GU Yu, HAN Ying, XU Kai, WANG Yan, JIANG Yinglong. Study on cracking mechanism of Inconel 625 alloy surfacing metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 117-123. DOI: 10.12073/j.hjxb.20230403001
    [4]WANG Xujian, TAN Caiwang, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr /Inconel 625 laser welding joints on HEPS storage ring vacuum box[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 35-40. DOI: 10.12073/j.hjxb.20220204002
    [5]GU Xiaoyan, LIN Xiaopeng, WANG Jinfeng, LI Huan. Control of the microstructure and mechanical properties of CMT arc wire additive manufactured Inconel 625 alloy by solution treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 70-76. DOI: 10.12073/j.hjxb.20220608001
    [6]WANG Xujian, WANG Ting, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr/Inconel 625 joints by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 92-97. DOI: 10.12073/j.hjxb.20211215002
    [7]TIAN Chaobo, YANG Xinqi, LI Shengli, TANG Wenshen, LI Huijun. High temperature creep behavior of friction stir welding joints for CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 38-45. DOI: 10.12073/j.hjxb.20200811003
    [8]HE Shuai, WANG Lijun, GE Keke. Control of dilution rate of Inconel 625 alloy surfacing based on elman network algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 124-128.
    [9]LIANG Enbao, HU Shengsun, WANG Zhijiang. Optimization of GTAW cladding process of Inconel 625 on carbon steel using response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 85-88,108.
    [10]CHEN Jian-Jun, AN Zi-liang, SHI Jin, TU Shan-dong, WANG Zheng-dong. Experimental research and numerical simulation on creep behavior of brazed joint at high temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 39-43.
  • Cited by

    Periodical cited type(10)

    1. 张泽宇,闫梦喆,罗文睿,席鑫,路永新,林丹阳,宋晓国. GH3230合金选区激光熔化成形工艺对激光焊开裂的影响研究. 航天制造技术. 2024(03): 54-59 .
    2. 张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625等离子弧焊接头组织与性能研究. 稀有金属材料与工程. 2023(02): 559-567 .
    3. 张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625合金及焊缝在Na_2SO_4-NaCl熔盐中热腐蚀行为. 稀有金属材料与工程. 2023(05): 1842-1850 .
    4. 赵洋洋,林可欣,王颖,龚宝明. 基于位错模型的增材制造构件疲劳裂纹萌生行为. 焊接学报. 2023(07): 1-8+129 . 本站查看
    5. 朱杰,周庆军,陈晓晖,冯凯,李铸国. 铺粉厚度对选区激光熔化GH3625组织与力学性能的影响. 焊接学报. 2023(10): 12-17+133 . 本站查看
    6. 李战斌,徐兵,徐祥久,闫国斌. 镍基合金SB-444 N06625 Gr.2焊接工艺及接头性能. 机械制造文摘(焊接分册). 2022(03): 33-36 .
    7. 褚强,谢红,李文亚,杨夏炜,陈海燕,范文龙. 高温合金熔焊接头组织性能研究现状. 铸造技术. 2022(11): 955-963 .
    8. 褚清坤,余春风,邓朝阳,胡新广,闫星辰,胡永俊,刘敏. TiC含量对激光选区熔化Inconel 625合金微观组织及表面摩擦磨损性能的影响. 中国表面工程. 2021(01): 76-84 .
    9. 苏允海,杨太森,戴志勇,王英第,梁学伟,武兴刚. Inconel 625熔敷金属抗Cl~-腐蚀行为分析. 焊接学报. 2021(06): 64-70+100-101 . 本站查看
    10. 段江丽,刘禹. 复杂曲面堆焊Inconel625/925A焊接工艺与分析. 新技术新工艺. 2021(11): 15-19 .

    Other cited types(3)

Catalog

    Article views (497) PDF downloads (36) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return