Advanced Search
ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001
Citation: ZHANG Yu, JIANG Yun, HU Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 78-84. DOI: 10.12073/j.hjxb.20191211001

Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting

More Information
  • Received Date: December 10, 2019
  • Available Online: September 26, 2020
  • Microstructure and high temperature creep properties of laser welded joints of Inconel 625 alloy fabricated by selective laser melting (SLM) method were investigated using optical microscope, scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometer. The results show that the quality of laser welded joints of Inconel 625 alloy by SLM is superior, and no obvious manufacturing defects are found. The microstructure of the laser welded Inconel 625 alloy by SLM specimen is mainly composed of the austenitic in the base metal and columnar dendrites in the fusion zone. High temperature creep test results show that the creep time of the alloy drops sharply with the increase of the applied stress level. The higher stress level (200 MPa) has a great influence on the creep property of the alloy at the same temperature, which will lead to the creep deformation directly entering the third stage of creep - acceleration stage, and cause the sample to fracture earlier. The mechanism of creep failure was discussed by analyses of the fracture surface. It is found that the fracture of all specimens occurred in the base metal or near the heat-affected zone. A large number of secondary cracks were observed in the base metal, while no obvious cracks were found in the fusion zone. Also, the fracture morphology is characterized by a rock candy pattern, indicating the intergranular fracture mode. The deformation displacement induced by the grain boundary slipping at elevated temperature is the principal mechanism of the cavity nucleation.
  • Maj P, Koralnik M, Adamczyk-Cieslak B, et al. Mechanical properties and microstructure of Inconel 625 cylinders used in aerospace industry subjected to flow forming with laser and standard heat treatment[J]. International Journal of Material Forming, 2019, 12(1): 135 − 144. doi: 10.1007/s12289-018-1413-8
    Li C, White R, Fang X Y, et al. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment[J]. Materials Science & Engineering A, 2017, 705: 20 − 31.
    Jafari D, Wits W W. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: a review[J]. Renewable & Sustainable Energy Reviews, 2018, 91: 420 − 442.
    尹燕, 刘鹏宇, 路超, 等. 选区激光熔化成形316L不锈钢微观组织及拉伸性能分析[J]. 焊接学报, 2018, 39(8): 77 − 81. doi: 10.12073/j.hjxb.2018390205

    Yin Yan, Liu Pengyu, Lu Chao, et al. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. Transactions of the China Welding Institution, 2018, 39(8): 77 − 81. doi: 10.12073/j.hjxb.2018390205
    Hu X A, Xue Z Y, Zhao G L, et al. Laser welding of a selective laser melted Ni-base superalloy: microstructure and high temperature mechanical property[J]. Materials Science & Engineering A, 2018, 745: 335 − 345.
    Yang J J, Wang Y, Li F Z, et al. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints[J]. Journal of Materials Science & Technology, 2019, 35(9): 1817 − 1824.
    王金凤, 杨立军, 孙明升, 等. 快速冷却对DP1000双相钢激光焊接接头性能的影响[J]. 焊接学报, 2019, 40(1): 113 − 118. doi: 10.12073/j.hjxb.2019400023

    Wang Jinfeng, Yang Lijun, Sun Mingsheng, et al. Effect of rapid cooling on mechanical properties of welded joint in laser welding of DP1000 dual phase steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 113 − 118. doi: 10.12073/j.hjxb.2019400023
    丁雨田, 孟斌, 高钰璧, 等. 固溶处理对GH3625合金板材组织及性能的影响[J]. 材料导报, 2018, 32(2): 243 − 248. doi: 10.11896/j.issn.1005-023X.2018.02.017

    Ding Yutian, Meng Bin, Gao Yubi, et al. Effect of solution treatment on the microstructure and mechanical properties of GH3625 superalloy sheet[J]. Materials Review, 2018, 32(2): 243 − 248. doi: 10.11896/j.issn.1005-023X.2018.02.017
    Ramkumar K D, Kumar P S G, Radhakrishna V S, et al. Studies on microstructure and mechanical properties of keyhole mode Nd: YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205[J]. Journal of Materials Research, 2015, 30(21): 3288 − 3298. doi: 10.1557/jmr.2015.276
    Li X Q, Hao B X, Chen Y X, et al. The microstructure mechanical performance for nonuniform welded joint of nickel-based alloy with nanoindentation[J]. China Welding, 2019, 28(2): 29 − 34.
    谢君, 田素贵, 周晓明. FGH95粉末镍基合金组织结构对蠕变机制的影响[J]. 稀有金属材料与工程, 2013, 42(2): 325 − 330. doi: 10.3969/j.issn.1002-185X.2013.02.022

    Xie Jun, Tian Sugui, Zhou Xiaoming. Influence of microstructure on creep mechanism of FGH95 powder Ni-based superalloy[J]. Rare Metal Materials and Engineering, 2013, 42(2): 325 − 330. doi: 10.3969/j.issn.1002-185X.2013.02.022
    谢君, 田素贵, 刘姣, 等. FGH95粉末镍基合金蠕变期间位错网的形成与分析[J]. 金属学报, 2013, 49(7): 838 − 844. doi: 10.3724/SP.J.1037.2012.00710

    Xie Jun, Tian Sugui, Liu Jiao, et al. Formation and analysis of dislocation network of FGH95 powder metallurgy Ni-based superalloy during creep[J]. Acta Metallurgica Sinica, 2013, 49(7): 838 − 844. doi: 10.3724/SP.J.1037.2012.00710
    孙朝阳, 石兵, 武传标, 等. BSTMUF601合金的高温蠕变变形机制[J]. 金属学报, 2015, 51(3): 349 − 356.

    Sun Chaoyang, Shi Bing, Wu Chuanbiao, et al. Deformation mechanism of BSTMUF601 superalloy[J]. Acta Metallurgica Sinica, 2015, 51(3): 349 − 356.
    Tang Y T, Karamched P, Liu J L, et al. Grain boundary serration in nickel alloy Inconel 600: quantification and mechanisms[J]. Acta Materials, 2019, 181: 352 − 366. doi: 10.1016/j.actamat.2019.09.037
    郭建亭, 袁超, 侯介山. 高温合金的蠕变及疲劳-蠕变-环境交互作用规律和机理[J]. 中国有色金属学报, 2011, 21(3): 487 − 504.

    Guo Jianting, Yuan Chao, Hou Jieshan. Creep and creep-fatigue-environment interaction and mechanisms of superalloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 487 − 504.
  • Cited by

    Periodical cited type(4)

    1. 刘伟,岳祚林,徐超,李素丽. 316L不锈钢焦耳热3D打印过程变形量数值分析. 焊接技术. 2024(04): 1-5 .
    2. 刘焜,闫朝阳,陈树君,陈希章. 电弧增材热源及轨迹规划研究进展. 焊接学报. 2024(11): 21-34 . 本站查看
    3. 刘伟,张鑫,李素丽,李小龙. 基于焦耳热增材制造过程的温度场分析研究. 焊接技术. 2023(10): 1-4 .
    4. 张鑫,刘伟,张伟博,李小龙. 金属3D打印焦耳热最大变形量数值分析. 焊接技术. 2023(11): 1-5 .

    Other cited types(0)

Catalog

    Article views (504) PDF downloads (43) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return