Advanced Search
CHEN Chen, ZHOU Fangzheng, LI Chenglong, LIU Xinfeng, JIA Chuanbao, XU Yao. Prediction method of plasma arc welding molten pool melting state based on spatial and channel characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 30-38. DOI: 10.12073/j.hjxb.20220516001
Citation: CHEN Chen, ZHOU Fangzheng, LI Chenglong, LIU Xinfeng, JIA Chuanbao, XU Yao. Prediction method of plasma arc welding molten pool melting state based on spatial and channel characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 30-38. DOI: 10.12073/j.hjxb.20220516001

Prediction method of plasma arc welding molten pool melting state based on spatial and channel characteristics

More Information
  • Received Date: May 15, 2022
  • Available Online: April 05, 2023
  • To improve the accuracy of predicting the molten pool penetration state in plasma arc welding so as to meet industrial needs, this paper proposes a model called PCSCNet that integrates image space and channel characteristics. In this model, the convolutional residual network ResNet50 structure is modified and integrated into the channel attention network squeeze and excitation network to simultaneously extract spatial feature information and channel feature information from the front image of the molten pool. By testing on a dataset of constant current plasma arc welding experiments, the model establishes the corresponding relationship between the front surface image of the weld pool and the state of the keyhole. The results show that the model achieves a prediction accuracy of over 95%. Using the Grad-CAM method, the model's predicted focus area is visualized, analyzed, and compared with the actual molten pool's image features to verify the model's reliability.
  • 陈健, 苏金花, 张毅梅. 《中国制造2025》与先进焊接工艺及装备发展[J]. 焊接, 2016(3): 1 − 5. doi: 10.3969/j.issn.1001-1382.2016.03.001

    Chen Jian, Su Jinhua, Zhang Yimei. 《Made in China 2025》and the development of advanced welding technology and equipment[J]. Welding & Joining, 2016(3): 1 − 5. doi: 10.3969/j.issn.1001-1382.2016.03.001
    忻建文, 吴东升, 李芳, 等. 小孔型等离子弧焊条形气孔形成机理[J]. 焊接学报, 2021, 42(12): 54 − 61,86. doi: 10.12073/j.hjxb.20210414003

    Xin Jianwen, Wu Dongsheng, Li Fang, et al. Formation mechanism of strip porosity in small hole plasma arc welding[J]. Transactions of the China Welding Institution, 2021, 42(12): 54 − 61,86. doi: 10.12073/j.hjxb.20210414003
    武传松, 赵晨昱, 贾传宝. 穿孔等离子弧焊接工艺研究进展[J]. 航空制造技术, 2015, 58(20): 34 − 39.

    Wu Chuansong, Zhao Chenyu, Jia Chuanbao. Research progress of piercing plasma arc welding process[J]. Aeronautical Manufacturing Technology, 2015, 58(20): 34 − 39.
    何建萍, 吴鑫, 吉永丰, 等. 100 μm超薄不锈钢板脉冲微束等离子弧焊成形机理[J]. 焊接学报, 2021, 42(6): 77 − 84.

    He Jianping, Wu Xin, Ji Yongfeng, et al. 100 μm forming mechanism of pulsed micro beam plasma arc welding of ultra-thin stainless steel plate[J]. Transactions of the China Welding Institution, 2021, 42(6): 77 − 84.
    李挺, 黄健康, 陈秀娟, 等. 旁路耦合微束等离子弧热特性及焊缝成形特点[J]. 焊接学报, 2018, 39(9): 55 − 60.

    Li Ting, Huang Jiankang, Chen Xiujuan, et al. Thermal characteristics and weld forming characteristics of bypass coupled micro beam plasma arc[J]. Transactions of the China Welding Institution, 2018, 39(9): 55 − 60.
    刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7): 1921 − 1942. doi: 10.3969/j.issn.1001-3695.2014.07.001

    Liu Jianwei, Liu Yuan, Luo Xionglin. Research progress of deep learning[J]. Application Research of Computers, 2014, 31(7): 1921 − 1942. doi: 10.3969/j.issn.1001-3695.2014.07.001
    覃科, 刘晓刚, 丁立新. 基于卷积神经网络的CO2焊接熔池图像状态识别方法[J]. 焊接, 2017(6): 21 − 26.

    Tan Ke, Liu Xiaogang, Ding Lixin. State recognition method of CO2 welding pool image based on convolution neural network[J]. Welding & Joining, 2017(6): 21 − 26.
    李海超, 刘景风, 谢吉兵, 等. 基于卷积神经网络的GTAW熔透预测[J]. 机械工程学报, 2019, 55(17): 22 − 28. doi: 10.3901/JME.2019.17.022

    Li Haichao, Liu Jingfeng, Xie Jibing et al. GTAW penetration prediction based on convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(17): 22 − 28. doi: 10.3901/JME.2019.17.022
    Li C, Wang Q, Jiao W, et al. Deep learning-based detection of penetration from weld pool reflection images[J]. Welding Journal, 2020, 99(9): 239s − 245s. doi: 10.29391/2020.99.022
    刘新锋. 基于正面熔池图像和深度学习算法的PAW穿孔/熔透状态预测[D]. 济南: 山东大学, 2017.

    Liu Xinfeng. Prediction of PAW perforation/penetration state based on frontal molten pool image and depth learning algorithm[D]. Jinan: Shandong University, 2017.
    Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2015, doi: 10.48550/arXiv.1512.07108.
    He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770 − 778.
    Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7132 − 7141.
    He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Angeles, USA, 2019: 558 − 567.
    Han S, Jeff P, John T, et al. Learning both weights and connections for efficient neural networks[C]//NIPS'15: 28th International Conference on Neural Information Processing Systems. MIT Press Cambridge,USA,2015: 1135 − 1143.
    Pham H, Guan MY, Zoph B, et al. Efficient neural architecture search via parameters sharing[C]//International Conference on Machine Learning. PMLR, Stockholm, Sweden, 2018: 4095 − 4104.
    吕国豪, 罗四维, 黄雅平, 等. 基于卷积神经网络的正则化方法[J]. 计算机研究与发展, 2014, 51(9): 1891 − 1900. doi: 10.7544/issn1000-1239.2014.20140266

    Lyu Guohao, Luo Siwei, Huang Yaquan, et al. Regularization method based on convolution neural network[J]. Journal of Computer Research and Development, 2014, 51(9): 1891 − 1900. doi: 10.7544/issn1000-1239.2014.20140266
    Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 2818 − 2826.
    Jia C B, Liu X F, Zhang G K, et al. Penetration/keyhole status prediction and model visualization based on deep learning algorithm in plasma arc welding[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(11): 3577 − 3597.
    Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]//IEEE International Conference on Computer Vision and Pattem Recognition. Hawaii, USA, 2017: 618 − 626.
  • Related Articles

    [1]WEI Deqiang, REN Xulong, WANG Rong, LV Shaopeng. Microstructure and hardness of W alloy on 45 steel by electron beam scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 98-103. DOI: 10.12073/j.hjxb.2019400050
    [2]WANG Hongna, YAN Yanfu, MA Shitao, QI Xuefeng, LIU Shuying. Effect of rare earth element (La,Nb) on hardness of Ti15Cu15Ni filler metal and shear strength of TC4 joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 99-103.
    [3]LEI Yucheng, LI Zhennan, ZHU Yanshan, JU Xin. Analysis of residual stress and hardness of T-joint on China low activation martensitic steel laser weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 73-76.
    [4]QU Yuebo, CAI Zhipeng, CHE Hongyan, PAN Jiluan. Effect on hardness and microstructures of rail joint with narrow gap arc welding by normalizing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 25-29.
    [5]LEI Yucheng, HAN Mingjuan, ZHU Qiang, JU Xin. Microstructure and hardness of laser welded joint of China low activation martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 5-8.
    [6]LEI Yucheng, GU Kangjia, ZHU Qiang, CHEN Xizhang, JU Xin, CHANG Fenghua. Hardness and microstructure of China low activation martensitic steel fusion welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 9-12.
    [7]LI Haitao, CHEN Furong, HU Yanhua, XIE Ruijun. Effects of peak temperature of welding thermal circle on hardness of 10CrMo910[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 75-78.
    [8]ZHANG Guifeng, MIAO Huixia, ZHANG Jianxun, PEI Yi, WANG Jian, ZHANG Yantao. Effects of immediate water cooling and normalization after welding on microstructure and hardness of heat affected zone of ultra-fine grain steels welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 47-50.
    [9]Liu Zhengjun, Lin Kegung, Liu Bingshan, Sun Bo. Remelting Harding for Inter Surfacing of Thick Oil Pump[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (3): 9-14.
    [10]Sun Weilong, Tang Muyao, Zhou Lixia. Prediction of microstructure and haroness in microalloyed steel HAZ by aid of computer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (3): 146-155.
  • Cited by

    Periodical cited type(1)

    1. 吴泓羲,钟佳宏,何小均,袁小平. 基于船用涡轮增压器焊接涡轮设计参数的仿真分析研究. 内燃机与配件. 2024(19): 21-23 .

    Other cited types(1)

Catalog

    Article views (280) PDF downloads (52) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return