Advanced Search
FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002
Citation: FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002

X-ray image defect recognition method for pipe weld based on improved convolutional neural network

More Information
  • Received Date: July 02, 2019
  • Available Online: July 12, 2020
  • When convolution neural network (CNN) is applied to weld flaw detection image recognition, the target area is small, the local information is redundant, and the hard saturation region of activation function is less than zero, which makes the model sensitive to input change and difficult to train the network parameters. The super pixel segmentation algorithm (SLIC) and the improved ELU activation function are used to construct CNN model for weld flaw detection image defect recognition. First, the ELU activation function is used in the CNN model to generate better robustness to the input noise when the response gradient disappears, At the same time, the SLIC algorithm is used to deal with the pixels of the image, which increases the proportion of the region of interest in the weld flaw detection image, reduces the local redundant information, and improves the feature extraction ability of the model in the training process. Through the extraction of the region of interest of weld flaw detection image and the establishment of the CNN model described in this paper, the results show that the proposed method has better performance than the traditional convolution neural network in feature extraction, training time and recognition accuracy of weld flaw detection image.
  • 张志芬, 杨哲, 任文静, 等. 电弧光谱深度挖掘下的铝合金焊接过程状态检测[J]. 焊接学报, 2019, 40(1): 19 − 25.

    Zhang Zhifen, Yang Zhe, Ren Wenjing, et al. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. Transactions of the China Welding Institution, 2019, 40(1): 19 − 25.
    Min Xiangjun. The development and design of the repair welding procedure of the thick wall duplex stainless steel piping[J]. China Welding, 2017, 26(1): 60 − 64.
    孙怡, 孙洪雨, 白鹏, 等. X射线焊缝图像中缺陷的实时检测方法[J]. 焊接学报, 2004, 25(2): 115 − 118. doi: 10.3321/j.issn:0253-360X.2004.02.029

    Sun Yi, Song Hongyu, Bai Peng, et al. Real-time automatic detection of weld defects in X-ray images[J]. Transactions of the China Welding Institution, 2004, 25(2): 115 − 118. doi: 10.3321/j.issn:0253-360X.2004.02.029
    Yang Zhenzhen, Kuang Nan, Fan Lu, et al. Review of image classification algorithms based on convolutional neural networks[J]. Journal of Signal Processing, 2018, 34(12): 84 − 99.
    周飞燕, 金林鹏, 董军. 卷积神经网络综述[J]. 计算机学报, 2017, 40(6): 1229 − 1251. doi: 10.11897/SP.J.1016.2017.01229

    Zhou Feiyan, Jin Linpeng, Dong Jun. Review of image classification algorithms based on convolutional neural networks[J]. Chinese Journal of Computers, 2017, 40(6): 1229 − 1251. doi: 10.11897/SP.J.1016.2017.01229
    Boureau Y, Roux N L, Bach F, et al. Ask the locals: multi-way local pooling for image recognition[C]// IEEE International Conference on Computer Vision. IEEE, 2011: 2651-2658.
    Wu X, He R, Sun Z, et al. A light CNN for deep face representation with noisy labels[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11): 1 − 11. doi: 10.1109/TIFS.2018.2879134
    Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Computer Science, 2018, 77: 354 − 377.
    Achanta R, Shaji A, Smith K, et al. SLIC superpixels comparedto state of the art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274 − 2282.
    Singh R, Om H. Newborn face recognition using deep convolutional neural network[J]. Multimedia Tools & Applications, 2017, 76(18): 1 − 11.
    Mery D, Riffo V, Zscherpel U, et al. The database of X-ray images for nondestructive testing[J]. Journal of Nondestructive Evaluation, 2015, 34(4): 1 − 12.
  • Cited by

    Periodical cited type(12)

    1. 汪孟杰,安康,祝贺,陈瑶,王李冬. 基于机器视觉技术的工业焊板焊缝位置检测系统. 物联网技术. 2025(01): 9-14+20 .
    2. 赵秋,唐琨,李英豪,林铮哲,陈鹏. 钢桥面板对接焊缝表面多缺陷疲劳效应研究. 铁道标准设计. 2024(03): 133-140+162 .
    3. 强伟,王克鸿,彭勇,袁银辉,路永新,董会. V形耦合双热源自熔焊接热-力分布特征. 稀有金属. 2024(04): 529-538 .
    4. 薛辰宇,石端虎,甄紫,孙远. 对接接头焊件射线检测图像焊缝区的自适应提取. 焊接技术. 2024(08): 106-110 .
    5. 陈晓明,王丽,马良,周峰,袁山山. 钢筋工程焊缝质量检测技术研究进展. 北京理工大学学报. 2024(12): 1215-1224 .
    6. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 .
    7. 董慧. 基于二元函数拟合的X射线焊缝图像缺陷分割方法. 焊接技术. 2023(07): 18-22 .
    8. 孙远,石端虎. T形接头角焊缝气孔缺陷空间位置数据的自动提取. 盐城工学院学报(自然科学版). 2023(02): 25-31 .
    9. 洪祥,张海越,宋骐. 基于图像识别的AH36钢激光焊缝节点定位技术研究. 计算机测量与控制. 2023(11): 299-305+314 .
    10. 蔡文龙,赵振,李文忠. 基于机器视觉的航空插头焊杯定位. 计算机仿真. 2022(06): 53-56 .
    11. 强伟,路永新,袁银辉,孙粲. T形接头冷丝填充双热源协同焊接数值模拟. 材料科学与工艺. 2021(05): 57-62 .
    12. 石端虎,吴三孩,历长云,沙静,孙远,杨峰. 对接接头焊件批量缺陷空间位置的可视化. 焊接. 2021(12): 48-52+66 .

    Other cited types(3)

Catalog

    Article views (691) PDF downloads (75) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return