Citation: | GAN Shiming, XU Yanwen, HAN Yongquan, ZHAI Zhiping. Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002 |
高望曦. 厚板焊接的表面残余应力测试方法研究[D]. 武汉: 武汉理工大学, 2011.
Gao Wangxi. Study of the measurement about the residual stress in thickness plate weldment[D]. Wuhan: Wuhan University of Technology, 2011.
|
Gan Shiming, Liu Huaying, Zhai Zhiping, et al. A review of welding residual stress test methods[J]. China Welding, 2022, 31(2): 45 − 55.
|
Vieira A B Jr. Identification of stresses in rectangular plates from vibration responses, with application to welding residual stresses[D]. Brazil: Federal University of Uberlândia, 2003.
|
Abdelmoula F, Refassi K, Bouamama M, et al. Modal analysis of FSW plate considering the residual stresses effect[J]. Annales de Chimie:Science des Materiaux, 2021, 45(1): 75 − 82. doi: 10.18280/acsm.450110
|
Gharehbaghi H, Hosseini S, Hosseini R. Investigation of the effect of welding residual stress on natural frequencies, experimental and numerical study[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2022(12): s40997-022-00588(1-9).
|
高永毅, 唐果, 万文. 具有焊接残余应力的矩形薄板固有频率计算方法研究[J]. 振动与冲击, 2014, 33(9): 165 − 167. doi: 10.13465/j.cnki.jvs.2014.09.030
Gao Yongyi, Tang Guo, Wan Wen. Natural frequencies calculation of a quadrate thin plate with welding residual stress[J]. Journal of Vibration and Shock, 2014, 33(9): 165 − 167. doi: 10.13465/j.cnki.jvs.2014.09.030
|
向宏霄. 焊接残余应力及其对结构振动特性影响研究[D]. 上海: 上海交通大学, 2020.
Xiang Hongxiao. Welding residual stress and its effect on structural vibration characteristics[D]. Shanghai: Shanghai Jiao Tong University, 2020.
|
陈炉云, 易宏. 含焊接残余应力薄圆板结构自由振动近似解[J]. 振动与冲击, 2021, 40(5): 119 − 125. doi: 10.13465/j.cnki.jvs.2021.05.016
Chen Luyun, Yi Hong. Approximate solutionto free vibration of thin circular plate structure with welding residual stress[J]. Journal of Vibration and Shock, 2021, 40(5): 119 − 125. doi: 10.13465/j.cnki.jvs.2021.05.016
|
Chen Li, Wang Tianqi, Pan Jianrong, et al. Welding residual stress distribution of U-Rib stiffened plates of steel box girders and its influence on structural natural frequencies[J]. Frontiers in Materials, 2022, 9: 1 − 9.
|
Vieira A B Jr, Rade D A, Scotti A. Identification of welding residual stresses in rectangular plates using vibration responses[J]. Inverse Problems in Science and Engineering, 2006, 14(3): 313 − 331. doi: 10.1080/17415970500521361
|
李传迎, 王秀刚, 吴兴文, 等. 基于模态法的高速列车车体关键位置应力谱及寿命评估研究[J]. 振动与冲击, 2022, 41(23): 10 − 18. doi: 10.13465/j.cnki.jvs.2022.23.002
Li Chuanying, Wang Xiugang, Wu Xingwen, et al. Stress spectra and life estimation of key positions of high speed train car body based on modal method[J]. Journal of Vibration and Shock, 2022, 41(23): 10 − 18. doi: 10.13465/j.cnki.jvs.2022.23.002
|
范高铭. 基于变分模态分解的残余应力检测及其评定方法研究[D]. 长春: 长春工业大学, 2019.
Fan Gaoming. Research on the residual stress detection and evaluation based on variational mode decomposition[D]. Changchun: Changchun University of Technology, 2019.
|
孟佑喜. 基于HHT振动信号能量分析的构件残余应力研究[D]. 长春: 长春理工大学, 2021.
Meng Youxi. Research on residual stress of component based on energy analysis of HHT vibration signal[D]. Changchun: Changchun University of Science and Technology, 2021.
|
Das D, Das A K, Pratihar D K, et al. Prediction of residual stress in electron beam welding of stainless steel from process parameters and natural frequency of vibrations using machine-learning algorithms[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2021, 235(11): 2008 − 2021. doi: 10.1177/0954406220950343
|
Hong Haitao, Han Yongquan, Du Maohua, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8): 2301 − 2308. doi: 10.1007/s00170-016-8381-2
|
Han Yongquan, Tong Jiahui, Hong Haitao, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 989 − 994. doi: 10.1007/s00170-018-3007-5
|
韩蛟, 韩永全, 洪海涛, 等. 铝合金等离子-MIG复合焊接电弧行为[J]. 焊接学报, 2022, 43(2): 45 − 49. doi: 10.12073/j.hjxb.20210702001
Han Jiao, Han Yongquan, Hong Haitao, et al. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(2): 45 − 49. doi: 10.12073/j.hjxb.20210702001
|
倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.
Ni Zhenhua. Vibration mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 1989.
|
Ge´Radin M, Rixen D. Mechanical vibrations-theory and application to structural dynamics[M]. UK: John Wiley & Sons, 1997.
|
Bassily S F, Dickinson S M. Buckling and lateral vibration of rectangular plates subject to in-plane loads-A Ritz approach[J]. Journal of Sound and Vibration, 1972, 24(2): 219 − 239. doi: 10.1016/0022-460X(72)90951-0
|
Young D. Vibratin of rectangular plates by the Ritz method[J]. Journal of Applied Mechanics, 1950, 17: 448 − 453. doi: 10.1115/1.4010175
|
中国机械工程学会铸造分会. 铸造手册: 第一卷, 铸铁[M]. 北京: 机械工业出版社, 2010.
Foundry Institution of Chinese Mechanical Engineering Society. Foundry Handbook: Volume 1, Cast Iron[M]. Beijing: China Machine Press, 2010.
|
[1] | HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001 |
[2] | CHEN Furong, LIU Chenghao, LI Nan. Effect of ultrasonic impact time on VPPA-MIG welded joint of 7A52 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 39-43. DOI: 10.12073/j.hjxb.20200403003 |
[3] | GAN Shiming, HAN Yongquan, CHEN Furong, LI Xiaofei. 7A52 aluminum alloy VPPA-MIG hybrid welding residual stress testing based on elastic modulus variation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 13-17,23. DOI: 10.12073/j.hjxb.2019400120 |
[4] | TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125 |
[5] | HONG Haitao, HAN Yongquan, TONG Jiahui, PANG Shigang. Study of arc shape and voltage-current characteristics in variable polarity plasma arc-MIG hybrid welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 65-69. |
[6] | CHUN Lan, HAN Yongquan, CHEN Furong, HONG Haitao. Pulse variable polarity plasma arc welding technology of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 29-32. |
[7] | YANG Tao, XU Kewang, LIU Yongzhen, GAO Hongming, WU Lin. Analysis on arc characteristics of plasma-MIG hybrid arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 62-66. |
[8] | YANG Tao, ZHANG Shenghu, GAO Hongming, WU Lin, XU Kewang, LIU Yongzhen. Plasma-MIG hybrid arc welding with PID increment constant current or voltage control algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 81-84,88. |
[9] | LU Zhenyang, WANG Long, CHEN Shujun, XUE Zhongming, YU Yang, JIANG Fan. Variable polarity plasma arc welding heat source model for an aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 87-91. |
[10] | CHEN Ke-xuan, LI He-qi, LI Chun-xu. Progress in variable polarity plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 124-128. |