Advanced Search
GAN Shiming, XU Yanwen, HAN Yongquan, ZHAI Zhiping. Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002
Citation: GAN Shiming, XU Yanwen, HAN Yongquan, ZHAI Zhiping. Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 34-40. DOI: 10.12073/j.hjxb.20220928002

Mechanism analysis and model parameters estimation of welding residual stress measurement based on modal test method

More Information
  • Received Date: September 27, 2022
  • Available Online: June 19, 2023
  • To reduce the negative influence of welding residual stress on the welded structure and guarantee the reliability of structure, it is necessary to explore the distribution of residual stress in the welded structure. Modal test method has been gradually applied in the measurement of residual stress due to its fast and non-destructive characteristics. In order to measure welding residual stress by modal test method, the mechanism of modal test method was analyzed by vibration theory, and the relationship between residual stress and natural frequency in thin plate welded structure was obtained. The residual tensile stress in the thin plate welded structure can cause the decrease of natural frequency, while the residual compressive stress can cause the increase of natural frequency. On the basis of theoretical analysis, the hole-drilling method and modal test experiment were combined, and the model parameters for measuring the residual stress of 6 mm 7A52 aluminum alloy(variable polarity plasma arc-metal inert gas, VPPA-MIG) hybrid welded plate using modal test method were estimated through the method of data fitting. The numerical relationship between natural frequency and residual stress was established. According to the established numerical relationship, the longitudinal residual stress distribution of 7A52 aluminum alloy plates under different hybrid welding parameters were measured through modal test experiment. The results illustrate that the distribution characteristics of residual stress measured by modal test method in each zone of the hybrid welded joint of 7A52 aluminum alloy plates are consistent with the results measured by hole-drilling method, and the deviation between the residual stress values measured by the two methods is within the range of 4%. Therefore, the estimated model parameters can guarantee the reliability of the measurement results of the modal test method. It has been achieved fast and non-destructive measurement of the welding residual stress using modal test method.
  • 高望曦. 厚板焊接的表面残余应力测试方法研究[D]. 武汉: 武汉理工大学, 2011.

    Gao Wangxi. Study of the measurement about the residual stress in thickness plate weldment[D]. Wuhan: Wuhan University of Technology, 2011.
    Gan Shiming, Liu Huaying, Zhai Zhiping, et al. A review of welding residual stress test methods[J]. China Welding, 2022, 31(2): 45 − 55.
    Vieira A B Jr. Identification of stresses in rectangular plates from vibration responses, with application to welding residual stresses[D]. Brazil: Federal University of Uberlândia, 2003.
    Abdelmoula F, Refassi K, Bouamama M, et al. Modal analysis of FSW plate considering the residual stresses effect[J]. Annales de Chimie:Science des Materiaux, 2021, 45(1): 75 − 82. doi: 10.18280/acsm.450110
    Gharehbaghi H, Hosseini S, Hosseini R. Investigation of the effect of welding residual stress on natural frequencies, experimental and numerical study[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2022(12): s40997-022-00588(1-9).
    高永毅, 唐果, 万文. 具有焊接残余应力的矩形薄板固有频率计算方法研究[J]. 振动与冲击, 2014, 33(9): 165 − 167. doi: 10.13465/j.cnki.jvs.2014.09.030

    Gao Yongyi, Tang Guo, Wan Wen. Natural frequencies calculation of a quadrate thin plate with welding residual stress[J]. Journal of Vibration and Shock, 2014, 33(9): 165 − 167. doi: 10.13465/j.cnki.jvs.2014.09.030
    向宏霄. 焊接残余应力及其对结构振动特性影响研究[D]. 上海: 上海交通大学, 2020.

    Xiang Hongxiao. Welding residual stress and its effect on structural vibration characteristics[D]. Shanghai: Shanghai Jiao Tong University, 2020.
    陈炉云, 易宏. 含焊接残余应力薄圆板结构自由振动近似解[J]. 振动与冲击, 2021, 40(5): 119 − 125. doi: 10.13465/j.cnki.jvs.2021.05.016

    Chen Luyun, Yi Hong. Approximate solutionto free vibration of thin circular plate structure with welding residual stress[J]. Journal of Vibration and Shock, 2021, 40(5): 119 − 125. doi: 10.13465/j.cnki.jvs.2021.05.016
    Chen Li, Wang Tianqi, Pan Jianrong, et al. Welding residual stress distribution of U-Rib stiffened plates of steel box girders and its influence on structural natural frequencies[J]. Frontiers in Materials, 2022, 9: 1 − 9.
    Vieira A B Jr, Rade D A, Scotti A. Identification of welding residual stresses in rectangular plates using vibration responses[J]. Inverse Problems in Science and Engineering, 2006, 14(3): 313 − 331. doi: 10.1080/17415970500521361
    李传迎, 王秀刚, 吴兴文, 等. 基于模态法的高速列车车体关键位置应力谱及寿命评估研究[J]. 振动与冲击, 2022, 41(23): 10 − 18. doi: 10.13465/j.cnki.jvs.2022.23.002

    Li Chuanying, Wang Xiugang, Wu Xingwen, et al. Stress spectra and life estimation of key positions of high speed train car body based on modal method[J]. Journal of Vibration and Shock, 2022, 41(23): 10 − 18. doi: 10.13465/j.cnki.jvs.2022.23.002
    范高铭. 基于变分模态分解的残余应力检测及其评定方法研究[D]. 长春: 长春工业大学, 2019.

    Fan Gaoming. Research on the residual stress detection and evaluation based on variational mode decomposition[D]. Changchun: Changchun University of Technology, 2019.
    孟佑喜. 基于HHT振动信号能量分析的构件残余应力研究[D]. 长春: 长春理工大学, 2021.

    Meng Youxi. Research on residual stress of component based on energy analysis of HHT vibration signal[D]. Changchun: Changchun University of Science and Technology, 2021.
    Das D, Das A K, Pratihar D K, et al. Prediction of residual stress in electron beam welding of stainless steel from process parameters and natural frequency of vibrations using machine-learning algorithms[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2021, 235(11): 2008 − 2021. doi: 10.1177/0954406220950343
    Hong Haitao, Han Yongquan, Du Maohua, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8): 2301 − 2308. doi: 10.1007/s00170-016-8381-2
    Han Yongquan, Tong Jiahui, Hong Haitao, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 989 − 994. doi: 10.1007/s00170-018-3007-5
    韩蛟, 韩永全, 洪海涛, 等. 铝合金等离子-MIG复合焊接电弧行为[J]. 焊接学报, 2022, 43(2): 45 − 49. doi: 10.12073/j.hjxb.20210702001

    Han Jiao, Han Yongquan, Hong Haitao, et al. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(2): 45 − 49. doi: 10.12073/j.hjxb.20210702001
    倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.

    Ni Zhenhua. Vibration mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 1989.
    Ge´Radin M, Rixen D. Mechanical vibrations-theory and application to structural dynamics[M]. UK: John Wiley & Sons, 1997.
    Bassily S F, Dickinson S M. Buckling and lateral vibration of rectangular plates subject to in-plane loads-A Ritz approach[J]. Journal of Sound and Vibration, 1972, 24(2): 219 − 239. doi: 10.1016/0022-460X(72)90951-0
    Young D. Vibratin of rectangular plates by the Ritz method[J]. Journal of Applied Mechanics, 1950, 17: 448 − 453. doi: 10.1115/1.4010175
    中国机械工程学会铸造分会. 铸造手册: 第一卷, 铸铁[M]. 北京: 机械工业出版社, 2010.

    Foundry Institution of Chinese Mechanical Engineering Society. Foundry Handbook: Volume 1, Cast Iron[M]. Beijing: China Machine Press, 2010.
  • Related Articles

    [1]HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001
    [2]CHEN Furong, LIU Chenghao, LI Nan. Effect of ultrasonic impact time on VPPA-MIG welded joint of 7A52 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 39-43. DOI: 10.12073/j.hjxb.20200403003
    [3]GAN Shiming, HAN Yongquan, CHEN Furong, LI Xiaofei. 7A52 aluminum alloy VPPA-MIG hybrid welding residual stress testing based on elastic modulus variation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 13-17,23. DOI: 10.12073/j.hjxb.2019400120
    [4]TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125
    [5]HONG Haitao, HAN Yongquan, TONG Jiahui, PANG Shigang. Study of arc shape and voltage-current characteristics in variable polarity plasma arc-MIG hybrid welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 65-69.
    [6]CHUN Lan, HAN Yongquan, CHEN Furong, HONG Haitao. Pulse variable polarity plasma arc welding technology of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 29-32.
    [7]YANG Tao, XU Kewang, LIU Yongzhen, GAO Hongming, WU Lin. Analysis on arc characteristics of plasma-MIG hybrid arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 62-66.
    [8]YANG Tao, ZHANG Shenghu, GAO Hongming, WU Lin, XU Kewang, LIU Yongzhen. Plasma-MIG hybrid arc welding with PID increment constant current or voltage control algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 81-84,88.
    [9]LU Zhenyang, WANG Long, CHEN Shujun, XUE Zhongming, YU Yang, JIANG Fan. Variable polarity plasma arc welding heat source model for an aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 87-91.
    [10]CHEN Ke-xuan, LI He-qi, LI Chun-xu. Progress in variable polarity plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 124-128.
  • Cited by

    Periodical cited type(3)

    1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 .
    2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 .
    3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 .

    Other cited types(2)

Catalog

    Article views (180) PDF downloads (47) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return