Advanced Search
HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001
Citation: HAN Jiao, HAN Yongquan, HONG Haitao, WANG Xuelong. Arc behavior of plasma-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 45-49. DOI: 10.12073/j.hjxb.20210702001

Arc behavior of plasma-MIG hybrid welding of aluminum alloy

More Information
  • Received Date: July 01, 2021
  • Accepted Date: January 25, 2022
  • Available Online: January 27, 2022
  • It is found that in the plasma-MIG hybrid welding of aluminum alloy, when the plasma arc welding current is 130 A and the MIG welding current is 180 A (base current is 95 A), the resistance of MIG arc near the plasma arc in the base current time is small, and the voltage of MIG arc in the hybrid welding is lower than that in the single MIG welding in the pulse base period, and the main ionization medium of the MIG arc biased towards the plasma arc is Ar. When the MIG welding current increases to 240 A (base current is 122 A), the above phenomenon disappears. Due to the thermal inertia of the welding arc, when the MIG arc is biased towards the plasma arc in the base current period, the MIG arc will still be biased towards the plasma arc in the pulse current rising stage and when the current has just reached the peak current, the MIG arc voltage in the hybrid welding is higher than that in the single MIG welding. When the MIG arc is biased towards plasma arc in hybrid welding, the stability of MIG arc decreases. With the increase of MIG welding current, the arc stability increases.
  • Holzer M, Hofmann K, Mann V, et al. Change of hot cracking susceptibility in welding of high strength aluminum alloy AA 7075[J]. Physics Procedia, 2016, 83: 463 − 471. doi: 10.1016/j.phpro.2016.08.048
    Ericsson M, R Sandström. Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG[J]. International Journal of Fatigue, 2003, 25(12): 1379 − 1387. doi: 10.1016/S0142-1123(03)00059-8
    Essers W G, Liefkens A C. Plasma-MIG welding developed by Philips[J]. Machinery and Production Engineering, 1972, 1(11): 632 − 633.
    Ton H. Physical properties of the plasma-MIG welding arc[J]. Journal of Physics D:Applied Physics, 1975, 8(8): 922 − 933. doi: 10.1088/0022-3727/8/8/006
    陈树君, 王旭平, 张亮, 等. 等离子-MIG复合焊接熔滴过渡及电弧耦合特性研究[J]. 焊接, 2014(2): 3 − 7.

    Chen Shujun, Wang Xuping, Zhang Liang, et al. Study on droplet transfer and arc coupling characteristics of plasma-MIG hybrid welding[J]. Welding & Joining, 2014(2): 3 − 7.
    Bai Y, Gao H M, Qiu L. Droplet transition for plasma-MIG welding on aluminum alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(12): 2234 − 2239. doi: 10.1016/S1003-6326(10)60634-6
    Hertel M U. Füssel, Schnick M. Numerical simulation of the plasma–MIG process—interactions of the arcs, droplet detachment and weld pool formation[J]. Welding in the World, 2014, 58(1): 85 − 92. doi: 10.1007/s40194-013-0095-6
    Ono K, Liu Z, Era T, et al. Development of a plasma MIG welding system for aluminum[J]. Welding International, 2009, 23(11): 805 − 809. doi: 10.1080/09507110902836945
    Cai D T, Han S G, Zheng S D, et al. Plasma-MIG hybrid welding process of 5083 marine aluminum alloy[J]. Materials Science Forum, 2016, 850: 519 − 525. doi: 10.4028/www.scientific.net/MSF.850.519
    Yang T, Xiong J, Chen H. Effect of process parameters on tensile strength in plasma-MIG hybrid welding for 2219 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12): 2413 − 2421. doi: 10.1007/s00170-015-7901-9
    Wang Y J, Wei B, Guo Y Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2): 58 − 64.
    Guo Y, Pan H, Ren L, et al. An investigation on plasma-MIG hybrid welding of 5083 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98: 1433 − 1440. doi: 10.1007/s00170-018-2206-4
    Hong H, Han Y, Du M, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 1 − 8.
    Han Y, Tong J, Hong H, et al. The influence of hybrid arc coupling mechanism on GMAW arc in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101: 1 − 6. doi: 10.1007/s00170-018-2906-9
    陈芙蓉, 刘成豪, 李男. 超声冲击时间对7A52铝合金VPPA-MIG焊接接头的影响[J]. 焊接学报, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003

    Chen Furong, Liu Chenghao, Li Nan. Effect of ultrasonic impact time on VPPA-MIG welded joint of 7A52 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(9): 39 − 43. doi: 10.12073/j.hjxb.20200403003
    洪海涛, 韩永全, 童嘉晖, 等. 铝合金VPPA-MIG复合焊接电弧形态及伏安特性[J]. 焊接学报, 2016, 37(9): 65 − 69.

    Hong Haitao, Han Yongquan, Tong Jiahui, et al. Aluminum alloy VPPA-MIG composite welding arc shape and volt – ampere characteristics[J]. Transactions of the China Welding Institution, 2016, 37(9): 65 − 69.
    Reis R P, Souza M D , Scotti A. Models to describe plasma jet, arc trajectory and arc blow formation in arc welding[J]. Welding in the World. 2011, 55 (3-4): 24-32.
  • Related Articles

    [1]LE Jian, LI Fayuan, SHU Zhiheng, ZENG Mingru, ZHANG Hua. Welding current and voltage detection and control method based on visual sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 85-89. DOI: 10.12073/j.hjxb.20240705002
    [2]ZHU Qidan, WANG Yanke, ZHU Wei, LIU Yue. Intelligent recognition algorithm of welding point based on structured light[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 82-87,99. DOI: 10.12073/j.hjxb.2019400186
    [3]LI Lin, LI Chun, ZOU Yanbiao. Welding path search algorithm based on machine vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 57-60.
    [4]GONG Yefei, LI Xinde, DAI Xianzhong, CHENG Xianggen. A weld robot off-line programming system integrated with virtual structured-light sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 17-20.
    [5]GONG Yefei, DAI Xianzhong, LI Xinde. Robust joint recognition with structured-light vision sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 85-88.
    [6]JIAO Xiang-dong, HUANG Song-tao, ZHOU Can-feng, XUE Long, FANG Xiao-ming, ZHANG Yi-sheng. Route recognition algorithm in hyperbaric subsea pipe welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 1-4.
    [7]LIU Li-jun, ZHAN Xiao-hong, HAN Yu-jie, LI Dong-qing, WU Lin. Multi-freedom controlling of dynamic moving track of tungsten electrode in narrow-gap all-position welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 17-21.
    [8]XU De, TU Zhi-guo, ZHAO Xiao-guang, TAN Min. Study on arc welding robot visual control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 10-14.
    [9]WANG Jian-jun, LIN Tao, CHEN Shan-ben, HU Jun-chuan. Adaptive control based on vision technology for aluminium alloy TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 17-20,24.
    [10]Li Yan, Shao Junbao, Wu Lin, Lin Tao. A method of robotic welding seam tracking with 3D vision information[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (2): 132-136.
  • Cited by

    Periodical cited type(1)

    1. 谭锦红,张新平,曹姗姗,王鹏,曾庆瑞,陈斌. U71Mn钢闪光-摩擦复合焊接头组织性能. 焊接学报. 2024(09): 62-68 . 本站查看

    Other cited types(0)

Catalog

    Article views (304) PDF downloads (60) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return