Advanced Search
CHEN Changrong, ZHOU Sunsheng, HE Hua, LIAN Guofu, HUANG Xu, FENG Meiyan. Planning and layout of V-groove welding beads based on parabolic model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 79-88. DOI: 10.12073/j.hjxb.20220820003
Citation: CHEN Changrong, ZHOU Sunsheng, HE Hua, LIAN Guofu, HUANG Xu, FENG Meiyan. Planning and layout of V-groove welding beads based on parabolic model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 79-88. DOI: 10.12073/j.hjxb.20220820003

Planning and layout of V-groove welding beads based on parabolic model

More Information
  • Received Date: August 19, 2022
  • Available Online: June 19, 2023
  • In order to improve the accuracy of bead planning for robotic welding of large-scale intersecting components, a multi-layer multi-pass planning method is proposed based on the parabolic model with a method of equal area and equal height. Firstly, process parameters, cross section of weld pass, welding sequence, gun position and posture were planned, and then the algorithm formula was worked out. Secondly, MATLAB software was carried out on the multi-layer multi-pass welding beads layout. Finally, robotic welding experiments were conducted to verify the planning algorithm of welding beads. The results show that the simulated welding beads profile match with the experimental contour of each layer and pass at V-groove. This demonstrates that the proposed multi-layer multi-pass weld planning algorithm based on the parabolic model is feasible and accurate. The research has provided important theoretical basis for the layout of multi-layer multi-pass beads for robotic welding of intersecting components.
  • 孙志广. 海洋石油工程固定式导管架平台TKY节点的焊接[J]. 焊接, 2017(5): 27 − 31.

    Sun Zhiguang. Welding of TKY nodes of fixed jacket platform in offshore oil engineering[J]. Welding & Joining, 2017(5): 27 − 31.
    邓彩艳, 宋蒙蒙, 龚宝明, 等. 试样厚度对韧脆转变温度区间的影响[J]. 焊接学报, 2018, 39(5): 1 − 4, 129.

    eng Caiyan, Song Mengmeng, Gong Baoming, et al. The effects of the sample thickness on the temperature interval of the tough and crispy transformation[J]. Transactions of the China Welding Institution, 2018, 39(5): 1 − 4, 129.
    胡啸, 崔川, 陈纬, 等. 厚板大坡口多层多道焊接轨迹规划算法[J]. 热加工工艺, 2022(15): 102 − 106.

    Hu Xiao, Cui Chuan, Chen Wei, et al. Trajectory planning algorithm for multi-layer and multi-pass welding of thick plates with large grooves[J]. Hot Working Technology, 2022(15): 102 − 106.
    Guo N, Wang M, Guo W, et al. Study on forming mechanism of appearance defects in rotating arc narrow gap horizontal GMAW[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75: 15 − 20. doi: 10.1007/s00170-014-6127-6
    张华军, 张广军, 蔡春波, 等. 厚板弧焊机器人自定义型焊道编排策略[J]. 焊接学报, 2009, 30(3): 61 − 64.

    Zhang Huajun, Zhang Guangjun, Cai Chunbo, et al. Strategy for custom welding bead arrangement for heavy plate arc welding robot[J]. Transactions of the China Welding Institution, 2009, 30(3): 61 − 64.
    苗新刚, 汪苏, 李晓辉, 等. 大构件相贯线焊接机器人多层多道焊轨迹规划[J]. 材料科学与工艺, 2010, 28(5): 629 − 634.

    Miao Xingang, Wang Su, Li Xiaohui, et al. Multi-layer and multi-pass welding trajectory planning of intersecting line welding robot for large components[J]. Materials Science and Technology, 2010, 28(5): 629 − 634.
    Yang C D, Huang H Y, Zhang H J, et al. Multi-pass route planning for thick plate of low alloy high strength steel by double-sided double arc welding[J]. Advanced Materials Research, 2012, 590: 28 − 34. doi: 10.4028/www.scientific.net/AMR.590.28
    Moriyasu M, Hiramoto S, Ohmine M, et al. Development of a multi-pass welding program for arc welding robots and its application to heavy electrical section pieces[J]. Transactions of the Japan Welding Society, 1993, 24: 24 − 29.
    杨光远. 多层多道焊路径自动规划及双机器人协调研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    Yang Guangyuan. Automatic path planning of multi-pass welding and research on double-robotic coordination [D]. Harbin: Harbin Institute of Technology, 2008.
    章锐, 汪选国, 刘伟, 等. 基于自定义填充策略的机器人中厚板多层多道焊离线编程与仿真[J]. 焊接技术, 2019, 48(12): 69 − 73.

    Zhang Rui, Wang Xuanguo, Liu Wei, et al. Offline programming and simulation of robotic multi-layer multi-pass welding of medium and heavy plates based on custom filling strategy[J]. Welding Technology, 2019, 48(12): 69 − 73.
    廖伟东, 李俊渊, 黄昕, 等. 多层多道焊机器人离线编程路径规划[J]. 机床与液压, 2021, 49(15): 67 − 70.

    Liao Weidong, Li Junyuan, Huang Xin, et al. Off-line programming path planning for multi-layer multi-pass welding robots[J]. Machine Tool & Hydraulics, 2021, 49(15): 67 − 70.
    刘理想, 柏兴旺, 周祥曼, 等. 电弧增材制造多层单道堆积的焊道轮廓模型函数[J]. 焊接学报, 2020, 41(6): 24 − 29,36.

    Liu Lixiang, Bai Xingwang, Zhou Xiangman, et al. Weld bead contour model function for multi-layer single pass stacking in arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(6): 24 − 29,36.
    Ding D H, Pan Z X, Dominic Cuiuri, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics and Computer-Integrated Manufacturing, 2015, 31: 101 − 110. doi: 10.1016/j.rcim.2014.08.008
    任清川, 徐雷, 何赛松, 等. 方管管端焊接坡口模型及加工工艺精度[J]. 焊接学报, 2013, 34(3): 69 − 72,116.

    Ren Qingchuan, Xu Lei, He Saisong, et al. Welding groove model and machining process accuracy of square tube end[J]. Transactions of the China Welding Institution, 2013, 34(3): 69 − 72,116.
    杨乘东, 张茂龙, 唐伟宝, 等. 双丝窄间隙埋弧焊焊接接头断裂韧性研究[J]. 发电设备, 2018, 32(1): 38 − 42. doi: 10.3969/j.issn.1671-086X.2018.01.010

    Yang Chengdong, Zhang Maolong, Tang Weibao, et al. Research on fracture toughness of double-wire narrow gap submerged arc welding joints[J]. Power Equipment, 2018, 32(1): 38 − 42. doi: 10.3969/j.issn.1671-086X.2018.01.010
    曹林攀, 易际明, 谢传禄, 等. 激光传感的机器人多层多道焊路径规划[J]. 机械设计与制造, 2016(1): 186 − 189. doi: 10.3969/j.issn.1001-3997.2016.01.052

    Cao Linpan, Yi Jiming, Xie Chuanlu, et al. Laser-sensing robot multi-layer multi-pass welding path planning[J]. Machinery Design & Manufacture, 2016(1): 186 − 189. doi: 10.3969/j.issn.1001-3997.2016.01.052
    孟羿辰. 弧焊机器人多层焊的路径规划[D]. 南昌: 南昌航空大学, 2012.

    Meng Yichen. Path planning for multi-layer welding of arc welding robots [D]. Nanchang: Nanchang Hangkong University, 2012.
  • Related Articles

    [1]YUAN Mingxin, DAI Xianling, LIU Chao, SUN Hongwei, WANG Lei. Feature parameters extraction of ship welds based on spatial position and contour distance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 84-92. DOI: 10.12073/j.hjxb.20211208002
    [2]HE Jianping, TAO Xuyang, JI Yongfeng. Dynamic distribution characteristic of temperature field and weld morphology control in pulsed microplasma arc welding ultra-thin sheets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 67-73. DOI: 10.12073/j.hjxb.20200423001
    [3]WANG Angyang, HE Jianping, WANG Xiaoxia, LINYANG Shenlan. Distribution characteristics and parameters effects of MPLW arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 77-81. DOI: 10.12073/j.hjxb.20151007002
    [4]JIANG Qixiang, ZOU Yirong, DU Dong. Spatial distribution measurement of gas tungsten arc current density based on image analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 101-104.
    [5]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [6]SHI Duanhu, GANG Tie, YANG Feng. Automatic corresponding criterion of bulk defects in I style weldments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 53-56.
    [7]SHI Duanhu, GANG Tie, HUANG Chuanhui, YANG Genxi. Automated extraction of spatial locating data for bulk defects in double T joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 69-72.
    [8]SHI Duan-hu, GANG Tie, YUAN Yuan. Spatial distribution features of weld defects in complex structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 71-74.
    [9]SHI Yu-xiang, QIAO Ya-xia, Masahiro TOYOSADA. Distribution feature of welding aerosol particle size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 31-34.
    [10]Han Guoming, Li Junyue, Wu Zhao, Liu Gang. Distribution Feature of Welding Arc Ultraviolet Spestrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 213-218.
  • Cited by

    Periodical cited type(12)

    1. 汪孟杰,安康,祝贺,陈瑶,王李冬. 基于机器视觉技术的工业焊板焊缝位置检测系统. 物联网技术. 2025(01): 9-14+20 .
    2. 赵秋,唐琨,李英豪,林铮哲,陈鹏. 钢桥面板对接焊缝表面多缺陷疲劳效应研究. 铁道标准设计. 2024(03): 133-140+162 .
    3. 强伟,王克鸿,彭勇,袁银辉,路永新,董会. V形耦合双热源自熔焊接热-力分布特征. 稀有金属. 2024(04): 529-538 .
    4. 薛辰宇,石端虎,甄紫,孙远. 对接接头焊件射线检测图像焊缝区的自适应提取. 焊接技术. 2024(08): 106-110 .
    5. 陈晓明,王丽,马良,周峰,袁山山. 钢筋工程焊缝质量检测技术研究进展. 北京理工大学学报. 2024(12): 1215-1224 .
    6. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 .
    7. 董慧. 基于二元函数拟合的X射线焊缝图像缺陷分割方法. 焊接技术. 2023(07): 18-22 .
    8. 孙远,石端虎. T形接头角焊缝气孔缺陷空间位置数据的自动提取. 盐城工学院学报(自然科学版). 2023(02): 25-31 .
    9. 洪祥,张海越,宋骐. 基于图像识别的AH36钢激光焊缝节点定位技术研究. 计算机测量与控制. 2023(11): 299-305+314 .
    10. 蔡文龙,赵振,李文忠. 基于机器视觉的航空插头焊杯定位. 计算机仿真. 2022(06): 53-56 .
    11. 强伟,路永新,袁银辉,孙粲. T形接头冷丝填充双热源协同焊接数值模拟. 材料科学与工艺. 2021(05): 57-62 .
    12. 石端虎,吴三孩,历长云,沙静,孙远,杨峰. 对接接头焊件批量缺陷空间位置的可视化. 焊接. 2021(12): 48-52+66 .

    Other cited types(3)

Catalog

    Article views (206) PDF downloads (62) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return