Advanced Search
YAN Yaotian, LIU Baishen, CAO Jian, QI Junlei. Process and properties of SiC brazing through multicomponent oxide assisted by electrothermal shock[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 22-29. DOI: 10.12073/j.hjxb.20220707001
Citation: YAN Yaotian, LIU Baishen, CAO Jian, QI Junlei. Process and properties of SiC brazing through multicomponent oxide assisted by electrothermal shock[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 22-29. DOI: 10.12073/j.hjxb.20220707001

Process and properties of SiC brazing through multicomponent oxide assisted by electrothermal shock

More Information
  • Received Date: July 06, 2022
  • Available Online: October 12, 2022
  • An electrothermal shock-assisted high-temperature brazing technology was proposed in this work, which successfully achieved the joining of 18.77Gd2O3-4.83Y2O3-28.22TiO2-8.75ZrO2-39.43Al2O3 multicomponent oxide filler and SiC ceramics. The SiC brazed joint with an optimal shear strength of 136.27 MPa was achieved under 20 A DC current and 800 W cut-off power by using carbon fiber as the heating element. The Al2O3 and TiO2 components in the multi-component oxide filler metal were very important to achieve a good SiC ceramic brazing joint. TiO2 reacted with SiC at high temperature to generate a Ti-rich interfacial reaction layer with a thickness of ~10 μm at the interface, and Al2O3 penetrated into the base metal to form a pinning effect, which was beneficial to improve the brazed joint strength. However, when the heat input was too large, the SiC base metal would decompose seriously, and a large amount of C element would diffuse to the brazing seam, resulting in obvious crack defects. The shear strength would be reduced to ~60 MPa, and the fracture completely occurred in the brazing seam.
  • Xiong J H, Huang J H, Zhang H, et al. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag-Cu-Ti active brazing alloy[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2010, 527(4-5): 1096 − 1101. doi: 10.1016/j.msea.2009.09.024
    蔡淑娟, 陈宇红, 朱新杰. Ag-Cu基复合钎料钎焊SiC陶瓷[J]. 热加工工艺, 2020, 49(7): 36 − 39.

    Cai Shujuan, Chen Yuhong, Zhu Xinjie. Brazing of SiC ceramic with Ag-Cu composite filler[J]. Hot Working Technology, 2020, 49(7): 36 − 39.
    李娟, 李立新, 秦庆东, 等. 填充泡沫Ti/AlSiMg的SiC钎焊接头组织性能研究[J]. 焊接学报, doi: 10.12073/j.hjxb.20211213001.

    Li Juan, Li Lixin, Qin Qingdong, et al. Microstructure and properties of SiC brazing joints filled with Ti/AlSiMg foam[J]. Transactions of the China Welding Instituting, doi: 10.12073/j.hjxb.20211213001.
    杨保琳, 张强, 任啟森, 等. 钎焊工艺对SiC/Kovar真空钎焊接头组织与性能的影响[J]. 真空科学与技术学报, 2021, 41(10): 952 − 958.

    Yang Baolin, Zhang Qiang, Ren Qisen, et al. Influence of brazing process on microstructure and properties of SiC/Kovar vacuum brazed joint[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(10): 952 − 958.
    蔡雨晨, 冯可芹, 周博芳, 等. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 131 − 135.

    Cai Yuchen, Feng Keqin, Zhou Bofang, et al. Effect of Nb on Zr-based filler and brazing SiC ceramics[J]. Materials Reports, 2022, 36(3): 131 − 135.
    Yang Z W, He P, Zhang L X, et al. Microstructural evolution and mechanical properties of the joint of TiAl alloys and C/SiC composites vacuum brazed with Ag-Cu filler metal[J]. Materials Characterization, 2011, 62(9): 825 − 832. doi: 10.1016/j.matchar.2011.05.007
    Yan Y T, Lin J H, Liu T, et al. Corrosion behavior of stainless steel-tungsten carbide joints brazed with AgCuX (X = In, Ti) alloys[J]. Corrosion Science, 2022, 200: 110231. doi: 10.1016/j.corsci.2022.110231
    Yuan X L, Sun Y, Guo H M, et al. Design of negative/nearly zero thermal expansion behavior over a wide temperature range by multi-phase composite[J]. Materials & Design, 2021, 203: 109591.
    Yang Z W, Wang C L, Han Y, et al. Design of reinforced interfacial structure in brazed joints of C/C composites and Nb by pre-oxidation surface treatment combined with in situ growth of CNTs[J]. Carbon, 2019, 143: 494 − 506. doi: 10.1016/j.carbon.2018.11.047
    王秒, 王微, 杨云龙, 等. 钎焊时间对CoFeNiCrCu高熵钎料钎焊SiC陶瓷接头组织与性能的影响[J]. 航空学报, 2022, 43(4): 482 − 491.

    Wang Miao, Wang Wei, Yang Yunlong, et al. Effect of brazing time on microstructure and properties of SiC ceramic brazed with CoFeNiCrCu[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 482 − 491.
    李红, 韩祎, 曹健, 等. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1 − 10.

    Li Hong, Han Yi, Cao Jian, et al. Research progress in high-entropy alloys used in brazing and surface engineering fields[J]. Journal of Materials Engineering, 2021, 49(8): 1 − 10.
    Patel M, Singh V, Singh S, et al. Micro-structural evolution during diffusion bonding of C-SiC/C-SiC composite using Ti interlayer[J]. Materials Characterization, 2018, 135: 71 − 75. doi: 10.1016/j.matchar.2017.11.031
    Gan Shiming, Liu Huaying, Zhai Zhiping, et al. A review of welding residual stress test methods[J]. China Welding, 2022, 31(2): 45 − 55. doi: 10.12073/j.cw.20220113001
    Li Juan, Chang Ziheng, Li Yusong, et al. Microstructure and property of bonds obtained by vacuum brazing using Al-Si-Ti-Cu-In filler metal[J]. China Welding, 2021, 30(3): 1 − 6. doi: 10.12073/j.cw.20210516001
    Guo Y C, Li J Q, Zhang Y, et al. High-entropy R2O3-Y2O3-TiO2-ZrO2-Al2O3 glasses with ultrahigh hardness, Young's modulus, and indentation fracture toughness[J]. iScience, 2021, 24(7): 102735. doi: 10.1016/j.isci.2021.102735
  • Related Articles

    [1]YANG Jianguo, CHEN Shuangjian, HUANG Nan, FANG Kun, YUAN Shijian, LIU Gang. Factors affecting deformation induced martensitic transformation of SUS304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 89-92.
    [2]YANG Ke, YU Shengfu, YANG Hua. Microstructure and high-temperature wear-resistance of nitrogen-alloying hardfacing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 5-8.
    [3]WANG Zhihui, HE Dingyong, JIANG Jianmin, CUI Li. Abrasive wear behavior of Fe-Cr-C hardfacing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 73-76.
    [4]LIU Zhengjun, ZONG Lin, SUN Jinggang, CI Honggang, SONG Xingkui. Hardfacing material for impact wear-resistance with Fe-Mn-Cr-Mo-V alloy system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 97-99, 104.
    [5]WEI Qi, ZHOU Xinjian, LI Hui, LI Zhuoxin. A new type high temperature abrasive wearing tester and its experimental evalwation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 65-68.
    [6]WANG Zhihui, HE Dingyong. Microstructures and properties of Fe -Cr -C hardfacing alloy strengthened by NbC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (2): 55-58.
    [7]WANG Fu-de, LI Zhi-yuan, YOU Min. Abrasive Wear of Cladding Metal of YDCrMoV CO2 Shielded Flux-cored Wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 46-49.
    [8]JI Gang-chang, WANG Yu-yue, LI Chang-jiu, K Sonoda. Abrasive Wear of HVOF Sprayed Cr3C2-NiCr Coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 89-92.
    [9]Meng Qingsen, Liu Mancai, Yin Sheng yi, Yao Quanfu. Middle Chromium Austenitic Alloy for Hardface Welding of Impact Wear-resitant[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (4): 42-48.
    [10]Lu Delin, Li Yanwen, Li Xianjun, Chen Junyi, Zhang Ruibin, Zheng Kui. Effect of lath martensite on toughness in overheated zone of 10Ni5CrMoV and 12Ni2CrMoVA steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (2): 114-120.

Catalog

    Article views (346) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return