Citation: | SI Xiaoqing, SU Yi, LI Chun, QI Junlei, CAO Jian. Reactive air brazing of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conductive ceramic and stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 8-14. DOI: 10.12073/j.hjxb.20220706003 |
Bian W J, Wang B M, Tang W, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604: 479 − 485.
|
Duan C, Tong J, Shang M. et al. Readily processed protonic ceramic fuel cells with high performance at low-temperatures[J]. Science, 2015, 349: 1321 − 1326. doi: 10.1126/science.aab3987
|
Duan C, Kee R J, Zhu H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cell[J]. Nature, 2018, 557: 217 − 222. doi: 10.1038/s41586-018-0082-6
|
Le L Q, Hernandez C H, Rodriguez M H, et al. Proton- conducting ceramic fuel cells: Scale up and stack integration[J]. Journal of Power Sources, 2021, 482: 228868. doi: 10.1016/j.jpowsour.2020.228868
|
Kaletsch A, Pfaff E M, Broeckmann C. Effect of aging on microstructure and mechanical strength of reactive air brazed BSCF/AISI 314-joints[J]. Advanced Engineering Materials, 2014, 16: 1430 − 1436. doi: 10.1002/adem.201400102
|
Fabbri E, Bi L, Pergolesi D, et al. Towards the next generation of solid oxide fuel cells operating below 600 ℃ with chemically stable proton-conducting electrolytes[J]. Advanced Materials, 2012, 24: 195 − 208. doi: 10.1002/adma.201103102
|
Lin C K, Lin T W, Wu S H, et al. Creep rupture of the joint between a glass-ceramic sealant and lanthanum strontium manganite-coated ferritic stainless steel interconnect for solid oxide fuel cells[J]. Journal of European Ceramic Society, 2018, 38(5): 2417 − 2429. doi: 10.1016/j.jeurceramsoc.2018.01.016
|
Chou Y S, Thomsen E C, Williams R T, et al. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility[J]. Journal of Power Sources, 2011, 196(5): 2709 − 2716. doi: 10.1016/j.jpowsour.2010.11.020
|
Kuhn B, Wetzel F J, Malzbender J, et al. Mechanical performance of reactive-air-brazed (RAB) ceramic/metal joints for solid oxide fuel cells at ambient temperature[J]. Journal of Power Sources, 2009, 193(1): 199 − 202. doi: 10.1016/j.jpowsour.2008.10.117
|
司晓庆, 李淳, 郑庆伟, 等. Ag-CuO-Al2O3复合钎料空气反应钎焊SOFC及服役性能[J]. 焊接学报, 2020, 41(5): 1 − 6. doi: 10.12073/j.hjxb.20190907001
Si Xiaoqing, Li Chun, Zheng Qingwei, et al. Reactive air brazing of SOFC using Ag-CuO-Al2O3 composite braze and the service performance study[J]. Transactions of the China Welding Institution, 2020, 41(5): 1 − 6. doi: 10.12073/j.hjxb.20190907001
|
蒋文春, 张玉财, 关学伟. 平板式SOFC钎焊自适应密封热应力与变形分析[J]. 焊接学报, 2012, 33(11): 55 − 58.
Jiang Wenchun, Zhang Yucai, Guan Xuewei. Thermal stress and deformation in bonded compliant seal design for planar SOFC[J]. Transactions of the China Welding Institution, 2012, 33(11): 55 − 58.
|
Zhou Q, Bieler T R, Nicholas J D, et al. Transient porous nickel interlayers for improved silver-based solid oxide fuel cell brazes[J]. Acta Materials, 2018, 148: 156 − 162. doi: 10.1016/j.actamat.2018.01.061
|
Cao J, Si X Q, Li W J, et al. Reactive air brazing of YSZ- electrolyte and Al2O3-substrate for gas sensor sealing: interfacial microstructure and mechanical properties[J]. International Journal of Hydrogen Energy, 2017, 42: 10683 − 10694. doi: 10.1016/j.ijhydene.2017.01.105
|
Wang X Y, Si X Q, Li C, et al. Joining the BaZr0.1Ce0.7Y0.1Yb0.1 O3-δ electrolyte to AISI 441 interconnect for protonic ceramic fuel cell applications: interfacial microstructure and long-term stability[J]. ACS Applied Energy Materials, 2021, 4: 7346 − 7354. doi: 10.1021/acsaem.1c01491
|
苏毅. 用于质子陶瓷燃料电池的不锈钢/BCZY-Yb 电解质空气下连接机理[D]. 哈尔滨: 哈尔滨工业大学, 2021.
Su Yi. Research on air brazing of BCZY-Yb ceramic to strainless steel in protonic ceramic fuel cell[D]. Harbin: Harbin Institute of Techonligy, 2021.
|
Si X Y, Wang D, Li C, et al. Exploring the role of Mn-Co spinel coating on Crofer 22 APU in adjusting reactions with the Ag based sealant during reactive air brazing[J]. Journal of Materials research and technology, 2022, 16: 608 − 618. doi: 10.1016/j.jmrt.2021.12.032
|
[1] | ZENG Kai, SUN Xiaoting, XING Baoying, FENG Yuyang. Process optimization and fracture characteristic analysis of DP780 high strength steel weld-bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 77-83. DOI: 10.12073/j.hjxb.20191017001 |
[2] | LI Xiaohong, ZHANG Yanhua, LI Zan, ZHANG Tiancang. Study on phase and texture of TC17(α + β)/TC17(β) linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 1-6. DOI: 10.12073/j.hjxb.20190219002 |
[3] | HUANG Zhichao, SONG Tianci, LAI Jiamei. Fatigue property and failure mechanism of self piercing riveted joints of TA1 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 41-46. DOI: 10.12073/j.hjxb.2019400069 |
[4] | LU Yi, HE Xiaocong, XING Baoying, ZHANG Xianlian. Effect of annealing treatment on the fatigue behavior of titanium alloy self-piecing riveted joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 124-128. DOI: 10.12073/j.hjxb.2018380083 |
[5] | ZHANG Long, ZENG Kai, HE Xiaocong, SUN Xinyu. Comparison of joint performance between spot weld bonding and resistance spot welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 55-30. DOI: 10.12073/j.hjxb.2018390013 |
[6] | SHAO Huakai, WU Aiping, ZOU Guisheng. Study on shear strength and fracture behavior of Cu-Sn system low-temperature TLP bonded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 13-16. |
[7] | CHEN Zhongyi, MA Yonglin, WANG Wenjun, XING Shuqing, LU Hengchang. Finite element analysis on post-weld heat treatment of heavy-section SA508-3 steel plate for nuclear pressure vessel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 80-84. |
[8] | CHEN Liang, LI Wenya, MA Tiejun, MA Caixia. Numerical analysis of linear friction welding process of steel S45C[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 91-94. |
[9] | JIN Yuhua, WANG Xijing, LI Changfeng, ZHANG Jie. Study on tensile properties of friction-stir-welded joints of 2024-M aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 69-72. |
[10] | ZHAO Zude, SHU Dayu, HUANG Jihua, HU Chuankai, KANG Feng. Strength and fracture character of SiCp/2009Al joint by composites reaction diffusion bonging with Al-Ag-Cu-Ti[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 100-104. |
1. |
陈琪,谢志雄,董仕节,解剑英. 高频感应焊TA2钛管焊后退火组织与性能研究. 湖北工业大学学报. 2024(01): 75-79 .
![]() | |
2. |
杜随更,刘冠翔,陈虎,胡弘毅,李菊. TC17(α+β)/TC17(β)线性摩擦焊接过程中焊合区组织及其织构演变. 机械工程学报. 2024(02): 99-106 .
![]() | |
3. |
高山,袁明强. Ti60/TC17异种钛合金惯性摩擦焊接头组织性能研究. 电焊机. 2023(08): 115-121+143 .
![]() | |
4. |
田助新,吴晓峰,杨梦. 焊接表面对线性摩擦焊轴向缩短量的影响. 航空精密制造技术. 2023(05): 33-34+70 .
![]() | |
5. |
杜随更,刘冠翔,李菊. 异质TC17线性摩擦焊接头焊后时效处理组织与性能. 焊接学报. 2022(07): 7-13+113-114 .
![]() | |
6. |
金俊龙,李菊,张传臣,常川川. 热处理对TC21钛合金线性摩擦焊接头组织与性能的影响. 焊接学报. 2022(09): 69-74+117 .
![]() | |
7. |
马核,李菊,王月,李晓红,张田仓,张彦华. 异态TC17钛合金线性摩擦焊接头微观组织与断裂韧性研究. 航空制造技术. 2022(21): 71-77 .
![]() | |
8. |
刘雷. 线性摩擦焊接摩擦振动伺服系统稳定性分析. 真空. 2021(02): 82-85 .
![]() | |
9. |
李睿,周军,张春波,乌彦全,梁武,秦丰. TC4/Ti17异质钛合金线性摩擦焊接头组织及力学性能. 机械制造文摘(焊接分册). 2021(02): 11-17 .
![]() | |
10. |
余学冉,陈云永. TC17钛合金线性摩擦焊接叶片单元件焊缝设计. 焊接. 2021(03): 26-29+62 .
![]() |