Advanced Search
NI Yunqiang, YANG Jiannan, FANG Xuewei, ZHANG Changchun, LI Chunxu, WANG Jian, LU Bingheng. The metal transfer behavior in CMT-based wire arc direct energy deposition of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 19-32. DOI: 10.12073/j.hjxb.20230308003
Citation: NI Yunqiang, YANG Jiannan, FANG Xuewei, ZHANG Changchun, LI Chunxu, WANG Jian, LU Bingheng. The metal transfer behavior in CMT-based wire arc direct energy deposition of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 19-32. DOI: 10.12073/j.hjxb.20230308003

The metal transfer behavior in CMT-based wire arc direct energy deposition of 2219 aluminum alloy

More Information
  • Received Date: March 07, 2023
  • Available Online: December 17, 2023
  • In the process of cold metal transfer ( CMT ) arc additive manufacturing, the flow behavior of the molten pool is easily affected by arc and droplet, which seriously affects the stability of the deposited layers and the quality of the formed parts. Using high-speed photography results and waveform graphs of electrical signal parameters and introducing a formula for calculating heat input, this article quantitatively analyses the influence of wire feeding speed and pulse correction coefficient on droplet transition process and single-pass form under CMT + PA mode from the aspects of characteristic electrical signals, droplet transition characteristics, heat input, etc., and also analyses the influence of wire feeding speed and EP/EN coefficient ƞ on droplet transition process and single-pass form under CMT + PA mode, providing reference and guidance for subsequent process optimization.

  • [1]
    Gu D D, Shi X Y, Reinhart R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): 1487. doi: 10.1126/science.abg1487
    [2]
    Costello S C, Cunningham C R, Xu F D, et al. The state-of-the-art of wire arc directed energy deposition (WA-DED) as an additive manufacturing process for large metallic component manufacture[J]. International Journal of Computer Integrated Manufacturing, 2023, 36(3): 469 − 510. doi: 10.1080/0951192X.2022.2162597
    [3]
    Fang X W, Yang J N, Jiang X, et al. Wire-arc directed energy deposited high-performance AZ31 magnesium alloy via a novel interlayer hammering treatment[J]. Materials Science and Engineering:A, 2024, 889: 145864. doi: 10.1016/j.msea.2023.145864
    [4]
    Eimer E, Williams S, Ding J, et al. Mechanical performances of the interface between the substrate and deposited material in aluminium wire direct energy deposition[J]. Materials & Design, 2023, 225: 111594.
    [5]
    Fang X W, Zhang L J, Chen G P, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering[J]. Materials Science & Engineering, 2021, 800: 140168.
    [6]
    Jing Y D, Fang X W, Xi N Y, et al. Improved tensile strength and fatigue properties of wire-arc additively manufactured 2319 aluminum alloy by surface laser shock peening[J]. Materials Science & Engineering, 2023, 864: 144599.
    [7]
    Omiyale B O, Olugbade T O, Abioye T E, et al. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review[J]. Materials Science and Technology, 2022, 38(7): 391 − 408.
    [8]
    Aldalur E, Suárez A, Veiga F. Metal transfer modes for wire arc additive manufacturing Al-Mg alloys: influence of heat input in microstructure and porosity[J]. Journal of Materials Processing Technology, 2021, 297: 117271. doi: 10.1016/j.jmatprotec.2021.117271
    [9]
    Fang X W, Chen G P, Yang J N, et al. Wire and arc additive manufacturing of high-strength Al-Zn-Mg aluminum alloy[J]. Frontiers in Materials, 2021, 8: 656429. doi: 10.3389/fmats.2021.656429
    [10]
    薛丁琪, 阮鹏祥, 程诗文, 等. 薄壁中空环形件的电弧增材制造工艺分析[J]. 焊接学报, 2021, 42(4): 42 − 48.

    Xue Dingqi, Ruan Pengxiang, Cheng Shiwen, et al. Analysis on manufacturing process for thin-walled circular structure based on wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(4): 42 − 48.
    [11]
    Pang J, Hu S S, Shen J Q, et al. Arc characteristics and metal transfer behavior of CMT + P welding process[J]. Journal of Materials Processing Technology, 2016, 238: 212 − 217. doi: 10.1016/j.jmatprotec.2016.07.033
    [12]
    Pan J J, He X X, Zhao P C, et al. Numerical analysis of typical droplets transfer mode in wire and arc additive manufacture process[J]. China Welding, 2020, 29(3): 44 − 53.
    [13]
    Lü X Q, Wang Z Z, Su H Y, et al. Analysis of droplet growth of positive and negative electrode on cold metal transfer welding of aluminum wire[J]. Journal of Manufacturing Processes, 2022, 78: 330 − 340. doi: 10.1016/j.jmapro.2022.04.026
    [14]
    Yang S, Xing Y F, Yang F Y, et al. Complex behavior of droplet transfer and spreading in cold metal transfer[J]. Shock and Vibration, 2020, 2020: 1 − 11.
    [15]
    韩永全, 刘乐乐, 孙振邦, 等. 车用薄镀锌板CMT搭接工艺特性[J]. 焊接学报, 2023, 44(2): 90 − 95.

    Han Yongquan, Liu Lele, Sun Zhenbang, et al. Characteristics of CMT lap joint process for thin galvanized sheet for vehicles[J]. Transactions of the China Welding Institution, 2023, 44(2): 90 − 95.
    [16]
    Wang Y W, Chen J, Chen M A, et al. Process stability and forming accuracy on wire arc additive manufactured Al-Zn-Mg-Cu alloy with different electrode positive/electrode negative ratios of CMT advance process[J]. Science and Technology of Welding and Joining, 2023, 28(5): 352 − 361. doi: 10.1080/13621718.2022.2162712
    [17]
    Zhang P L, Li G J, Yan H, et al. Effect of positive/negative electrode ratio on cold metal transfer welding of 6061 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(3-4): 1453 − 1464. doi: 10.1007/s00170-019-04705-y
    [18]
    Pickin C G, Williams S W, Lunt M. Characterization of the cold metal transfer (CMT) process and its application for low dilution cladding[J]. Journal of Materials Processing Technology, 2011, 211(3): 496 − 502. doi: 10.1016/j.jmatprotec.2010.11.005
  • Related Articles

    [1]ZHU Ming, ZHANG Hao, SHI Kun, HOU Xiaofei, SHI Yu. Analysis of surface roughness of fluorocarbon aluminum powder coating during laser cleaning and its influence on laser absorption[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 43-53. DOI: 10.12073/j.hjxb.20230331002
    [2]ZHOU Wenting, SI Yupeng, HE Hongzhou, WANG Rongjie. Design of reflow oven furnace temperature based on quantum multi-objective optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 85-91. DOI: 10.12073/j.hjxb.20210508001
    [4]YANG Tuoyu, MENG Gongge, CHEN Feng, XIA Xianming. Effects of surface absorption of Ge on Sn2.5Ag0.7Cu/Cu interfacial reaction and wettability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 85-88.
    [5]WANG He, WANG Wei, ZHU Chengyu, WANG Xuyou, LIN Shangyang. Absorption of GMAW pulse arc to Nd:YAG laser power[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 61-64.
    [6]GUO Chunhuan, CHI Zhidong, FU Xueman, LIU Ruitang. Difference of impact absorbed energy between butt weld metal and deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 99-102.
    [7]SHEN Jie, JIN Xian-long, GUO Yi-zhi. Numerical simulation on vibration in ultrasonic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 13-16.
    [8]ZHANG Yi, LI Li-jun, CHENG Gen-yu, ZHANG gang. Fresnel absorption in keyhole in deep penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 121-124,128.
    [9]ZHANG De-fen, CHEN Xiao-wen, SONG Tian-min, ZHANG Guo-fu, ZUO Liang. Study of mechanical vibration welding on impact energy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 85-87.
    [10]CHEN Yan bin, LI Li qun, WU Lin. Quantitative measurement of absorption and defocusing of laser beam by electric arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 56-58.

Catalog

    Article views (201) PDF downloads (61) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return