Advanced Search
QIN Zihao, LI Xiangwen, ZHENG Xuejun, HONG Bo, LI Jizhan, ZHOU Furong. Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 84-94. DOI: 10.12073/j.hjxb.20220618001
Citation: QIN Zihao, LI Xiangwen, ZHENG Xuejun, HONG Bo, LI Jizhan, ZHOU Furong. Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 84-94. DOI: 10.12073/j.hjxb.20220618001

Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field

More Information
  • Received Date: June 17, 2022
  • Available Online: April 27, 2023
  • To address the difficulty of extracting welding seam information under the action of a longitudinal magnetic field, a “mountain”-distributed longitudinal magnetic field sensor composed of three longitudinally distributed magnetic induction coils was designed. The arc shape under the action of an asymmetric longitudinal magnetic field was simulated using COMSOL software. The magnetic induction intensity corresponding to the arc voltage distribution during welding was considered the magnetic induction intensity for weld identification experimentation. The arc trajectory under the action of the asymmetric longitudinal magnetic field was photographed with a high-speed camera and compared with the arc trajectory designed by the new sensor to verify changes in the arc shape of the asymmetric longitudinal magnetic field generated by the longitudinal magnetic field sensor. The results show that the asymmetric longitudinal magnetic field can control the arc to identify the weld seam and can solve undercut and sidewall non-fusion in the narrow gap welding process. This method opens a new direction for applying magnetron seam tracking sensors in narrow gap welding.
  • Kiryukhantsev-Korneev P V. Pulsed magnetron sputtering of ceramic SHS targets as a promising technique for deposition of multifunctional coatings[J]. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56(2): 343 − 357. doi: 10.1134/S2070205120020124
    Sun Z, Guo M, Vleugels J, et al. Strong static magnetic field processing of metallic materials: A review[J]. Current Opinion in Solid State & Materials Science, 2012, 16(5): 254 − 267.
    Yu J, Du D, Ren Z, et al. Influence of an axial magnetic field on microstructures and alignment in directionally solidified Ni-based superalloy[J]. ISIJ International, 2017, 57(2): 337 − 342. doi: 10.2355/isijinternational.ISIJINT-2016-352
    Muyskens S M, Eddir T I, Goldstein R C. Improving induction tube welding system performance using soft magnetic composites[J]. Compel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39(1): 185 − 191.
    Brown D C. The effect of electromagnetic stirring and mechanical vibration[J]. Welding Journal, 1962, 41(2): 241 − 250.
    曾松盛, 石永华, 王国荣. 基于电弧传感器的焊缝跟踪技术现状与展望[J]. 焊接技术, 2008, 37(2): 1-5.

    Zeng Songsheng, Shi Yonghua, Wang Guorong. Current situation and prospect of weld tracking technology based on arc sensor [J] Welding Technique, 2008, 37(2): 1-5.
    Wang J, Sun Q, Feng J, et al. Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation[J]. The International Journal of Advanced Manufacturing Technology, 2017(90): 413 − 420.
    Chen J, Zhang Y, Wu C, et al. Suppression of undercut defects in high-speed GMAW through a compound magnetic field[J]. Journal of Materials Processing Technology, 2019, 274: 116288. doi: 10.1016/j.jmatprotec.2019.116288
    Matsumoto N, Kuno I, Yamamoto T, et al. Arc behavior in non-uniform AC magnetic field[J]. ISIJ International, 2012, 52(3): 488 − 492. doi: 10.2355/isijinternational.52.488
    洪波, 魏复理, 来鑫, 等. 一种用于焊缝跟踪的磁控电弧传感器[J]. 焊接学报, 2008, 29(5): 4 − 7.

    Hong Bo, Wei Fuli, Lai Xin, et al. A magnetic-control arc sensor for seam-tracking[J]. Transactions of the China Welding Institution, 2008, 29(5): 4 − 7.
    Wienecke R, Naturforsch Z. The characters of arc in a longitudinal magnetic field[J]. Applied Physics, 1963, 57(3): 1151 − 1154.
    Yin X, Gou J, Zhang J, et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D Applied Physics, 2012, 45(28): 285203 − 285215. doi: 10.1134/S0018151X17050182
    殷咸青, 罗键, 李海刚. 纵向磁场参数对LD10CS铝合金TIG焊焊缝组织的影响[J]. 西安交通大学学报, 1999(7): 73 − 76.

    Yin Xianqing, Luo Jian, Li Haigang. Effect of magnetic parameters and mechanical properties on grain refining in LD10CS aluminum alloy weld with magnetic stirring[J]. Journal of Xi'an Jiaotong University, 1999(7): 73 − 76.
    Liu Y, Sun Q, Wang H, et al. Effect of the axial external magnetic field on copper/aluminium arc weld joining[J]. Science & Technology of Welding & Joining, 2016, 21(6): 460 − 465.
    Urusova R M, Urusova I R. Numerical simulation of the screw shape of an electric arc in an external axial magnetic field[J]. High Temperature, 2017, 55(5): 643 − 649. doi: 10.1088/0022-3727/45/28/285203
    Zou X, Gong Y, Liu J, et al. The effect of external magnetic field, current and arc column radius on the arc helical instability[J]. Acta Physica Sinica, 2004, 53(3): 824 − 828. doi: 10.7498/aps.53.824
    刘一搏, 张鸿名, 孙清洁, 等. 磁场作用下铝/钢CMT焊接温度场及熔池流动行为[J]. 机械工程学报, 2018, 54(2): 62 − 68. doi: 10.3901/JME.2018.02.062

    Liu Yibo, Zhang Hongming, Sun Qingjie, et al. Temperature field and molten pool flow behavior of aluminum / steel CMT welding under magnetic field[J]. Journal of Mechanical Engineering, 2018, 54(2): 62 − 68. doi: 10.3901/JME.2018.02.062
    高延峰, 吴东. 侧向风场作用下横向焊接旋转电弧传感及焊缝跟踪[J]. 焊接学报, 2018, 39(4): 36 − 40. doi: 10.12073/j.hjxb.2018390091

    Gao Yanfeng, Wu Dong. Transverse welding rotating arc sensing and weld tracking under lateral wind field[J]. Transactions of the China Welding Institution, 2018, 39(4): 36 − 40. doi: 10.12073/j.hjxb.2018390091
    王猛, 吕晓春, 梁晓梅, 等. 窄间隙 TIG 横焊侧壁熔合行为[J]. 焊接学报, 2016, 37(6): 118 − 123.

    Wang Meng, Lyu Xiaochun, Liang Xiaomei, et al. Sidewall fusion behavior of narrow gap TIG transverse welding[J]. Transactions of the China Welding Institution, 2016, 37(6): 118 − 123.
  • Related Articles

    [1]WANG Zheng, GUI Chibin, WANG Yuhua. Effect of Ti content on microstructure toughness of deposited metal with flux cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 109-112.
    [2]LI Wei-wei, LIU Ya-xu, GAO Hui-lin, ZHAO Xin-wei, FENG Yaorong, JI Ling-kang. Analysis of toughness in HAZ for X80 pipeline steel welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 43-46.
    [3]LI Hong-wei, HE Chang-hong, PENG Yun, TIAN Zhi-ling, LIU Rong-pei, CHEN Yan-qing. High toughness submerged arc welding wire of ship steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 96-100.
    [4]XUE Xiao-huai, QIAN Bai-nian, GUO Xu-ming, LOU Song-nian. Development of Submerged Arc Welding Wire for High Strength and High Toughness Pipeline Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 23-27.
    [5]CHEN Mao-ai, WU Chuan-song, WANG Jian. guo, TANG Yi-min, LOU Song-nian. Effect of Second Phase Partlde on Mlcrostructure and Toughness of CGHAZ in HSLA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 37-40.
    [6]Zhang Xianhui, Jiao Wei, Tan Changying. HAZ Structure, Toughness and Characteristics to Hydrogen-Induced Cracking(HIC) of Steel 20MnNiMo[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 9-12.
    [7]Lu Delin, Li Yanwen, Li Xianjun, Chen Junyi, Zhang Ruibin, Zheng Kui. Effect of lath martensite on toughness in overheated zone of 10Ni5CrMoV and 12Ni2CrMoVA steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (2): 114-120.
    [8]Tan Changying, Zhang Xianhui, Wen Anran. Effect of nitrogen on impact toughness of deposited metals of Ti-microalloyed HSLA wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (3): 161-167.
    [9]Yang Yongxing, He Huaixing. THE HELPFUL EFFECT OF ANGLE RESTRAINT ON WELDING HAZ TOUGHNESS IN 15MnMoVNREs STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (1): 36-42.
    [10]Xiong Jialin, Lan Qiang, Wang Aiquen. THE EFFECT OF THERMAL PRESTRAIN ON FRACTURE TOUGHNESS OF HAZ OF WT-62CF LOW ALLOY HIGH STRENGTH STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (1): 55-64.
  • Cited by

    Periodical cited type(2)

    1. 杨俊朝,黄冠,丁宗业,纠永涛,龙伟民,胡侨丹. 基于同步辐射与第一性原理计算的Al/Cu钎焊界面组织与接头性能研究. 铸造技术. 2024(03): 293-299 .
    2. 张学智,黄玲玲,李云鹏,于卓立,曹新娜,宋路阳,安鹏涛,魏世忠. Ni镀层对Cu/Al钎焊接头界面组织与力学性能的影响. 河南科技大学学报(自然科学版). 2024(04): 23-29+4-5 .

    Other cited types(1)

Catalog

    Article views (253) PDF downloads (65) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return