Advanced Search
QIN Zihao, LI Xiangwen, ZHENG Xuejun, HONG Bo, LI Jizhan, ZHOU Furong. Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 84-94. DOI: 10.12073/j.hjxb.20220618001
Citation: QIN Zihao, LI Xiangwen, ZHENG Xuejun, HONG Bo, LI Jizhan, ZHOU Furong. Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 84-94. DOI: 10.12073/j.hjxb.20220618001

Seam recognition by magnetic control seam tracking sensor under asymmetric longitudinal magnetic field

More Information
  • Received Date: June 17, 2022
  • Available Online: April 27, 2023
  • To address the difficulty of extracting welding seam information under the action of a longitudinal magnetic field, a “mountain”-distributed longitudinal magnetic field sensor composed of three longitudinally distributed magnetic induction coils was designed. The arc shape under the action of an asymmetric longitudinal magnetic field was simulated using COMSOL software. The magnetic induction intensity corresponding to the arc voltage distribution during welding was considered the magnetic induction intensity for weld identification experimentation. The arc trajectory under the action of the asymmetric longitudinal magnetic field was photographed with a high-speed camera and compared with the arc trajectory designed by the new sensor to verify changes in the arc shape of the asymmetric longitudinal magnetic field generated by the longitudinal magnetic field sensor. The results show that the asymmetric longitudinal magnetic field can control the arc to identify the weld seam and can solve undercut and sidewall non-fusion in the narrow gap welding process. This method opens a new direction for applying magnetron seam tracking sensors in narrow gap welding.
  • Kiryukhantsev-Korneev P V. Pulsed magnetron sputtering of ceramic SHS targets as a promising technique for deposition of multifunctional coatings[J]. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56(2): 343 − 357. doi: 10.1134/S2070205120020124
    Sun Z, Guo M, Vleugels J, et al. Strong static magnetic field processing of metallic materials: A review[J]. Current Opinion in Solid State & Materials Science, 2012, 16(5): 254 − 267.
    Yu J, Du D, Ren Z, et al. Influence of an axial magnetic field on microstructures and alignment in directionally solidified Ni-based superalloy[J]. ISIJ International, 2017, 57(2): 337 − 342. doi: 10.2355/isijinternational.ISIJINT-2016-352
    Muyskens S M, Eddir T I, Goldstein R C. Improving induction tube welding system performance using soft magnetic composites[J]. Compel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39(1): 185 − 191.
    Brown D C. The effect of electromagnetic stirring and mechanical vibration[J]. Welding Journal, 1962, 41(2): 241 − 250.
    曾松盛, 石永华, 王国荣. 基于电弧传感器的焊缝跟踪技术现状与展望[J]. 焊接技术, 2008, 37(2): 1-5.

    Zeng Songsheng, Shi Yonghua, Wang Guorong. Current situation and prospect of weld tracking technology based on arc sensor [J] Welding Technique, 2008, 37(2): 1-5.
    Wang J, Sun Q, Feng J, et al. Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation[J]. The International Journal of Advanced Manufacturing Technology, 2017(90): 413 − 420.
    Chen J, Zhang Y, Wu C, et al. Suppression of undercut defects in high-speed GMAW through a compound magnetic field[J]. Journal of Materials Processing Technology, 2019, 274: 116288. doi: 10.1016/j.jmatprotec.2019.116288
    Matsumoto N, Kuno I, Yamamoto T, et al. Arc behavior in non-uniform AC magnetic field[J]. ISIJ International, 2012, 52(3): 488 − 492. doi: 10.2355/isijinternational.52.488
    洪波, 魏复理, 来鑫, 等. 一种用于焊缝跟踪的磁控电弧传感器[J]. 焊接学报, 2008, 29(5): 4 − 7.

    Hong Bo, Wei Fuli, Lai Xin, et al. A magnetic-control arc sensor for seam-tracking[J]. Transactions of the China Welding Institution, 2008, 29(5): 4 − 7.
    Wienecke R, Naturforsch Z. The characters of arc in a longitudinal magnetic field[J]. Applied Physics, 1963, 57(3): 1151 − 1154.
    Yin X, Gou J, Zhang J, et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D Applied Physics, 2012, 45(28): 285203 − 285215. doi: 10.1134/S0018151X17050182
    殷咸青, 罗键, 李海刚. 纵向磁场参数对LD10CS铝合金TIG焊焊缝组织的影响[J]. 西安交通大学学报, 1999(7): 73 − 76.

    Yin Xianqing, Luo Jian, Li Haigang. Effect of magnetic parameters and mechanical properties on grain refining in LD10CS aluminum alloy weld with magnetic stirring[J]. Journal of Xi'an Jiaotong University, 1999(7): 73 − 76.
    Liu Y, Sun Q, Wang H, et al. Effect of the axial external magnetic field on copper/aluminium arc weld joining[J]. Science & Technology of Welding & Joining, 2016, 21(6): 460 − 465.
    Urusova R M, Urusova I R. Numerical simulation of the screw shape of an electric arc in an external axial magnetic field[J]. High Temperature, 2017, 55(5): 643 − 649. doi: 10.1088/0022-3727/45/28/285203
    Zou X, Gong Y, Liu J, et al. The effect of external magnetic field, current and arc column radius on the arc helical instability[J]. Acta Physica Sinica, 2004, 53(3): 824 − 828. doi: 10.7498/aps.53.824
    刘一搏, 张鸿名, 孙清洁, 等. 磁场作用下铝/钢CMT焊接温度场及熔池流动行为[J]. 机械工程学报, 2018, 54(2): 62 − 68. doi: 10.3901/JME.2018.02.062

    Liu Yibo, Zhang Hongming, Sun Qingjie, et al. Temperature field and molten pool flow behavior of aluminum / steel CMT welding under magnetic field[J]. Journal of Mechanical Engineering, 2018, 54(2): 62 − 68. doi: 10.3901/JME.2018.02.062
    高延峰, 吴东. 侧向风场作用下横向焊接旋转电弧传感及焊缝跟踪[J]. 焊接学报, 2018, 39(4): 36 − 40. doi: 10.12073/j.hjxb.2018390091

    Gao Yanfeng, Wu Dong. Transverse welding rotating arc sensing and weld tracking under lateral wind field[J]. Transactions of the China Welding Institution, 2018, 39(4): 36 − 40. doi: 10.12073/j.hjxb.2018390091
    王猛, 吕晓春, 梁晓梅, 等. 窄间隙 TIG 横焊侧壁熔合行为[J]. 焊接学报, 2016, 37(6): 118 − 123.

    Wang Meng, Lyu Xiaochun, Liang Xiaomei, et al. Sidewall fusion behavior of narrow gap TIG transverse welding[J]. Transactions of the China Welding Institution, 2016, 37(6): 118 − 123.
  • Related Articles

    [1]SUN Jiahao, ZHANG Chaoyong, WU Jianzhao, ZHANG Shuaikun, ZHU Lei. Prediction of weld profile of 316L stainless steel based on generalized regression neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 40-47. DOI: 10.12073/j.hjxb.20210526003
    [2]LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001
    [3]ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046
    [4]XUE Jiaxiang, JIANG Chengfeng, ZHANG Xiaoli, ZHU Xiaojun, ZHU Qiang. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 75-78.
    [5]LIN Naichang, YANG Xiaoxiang, LIN Wen-jian, ZHU Zhibin. Defect detection of TOFD D scanning image based on parabola Htting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 105-108.
    [6]ZHU Xiaopeng, ZHANG Ke, TU Zhiqiang, HUANG Jie. Calibration of relative position and orientation between robot and positioner based on spheres fitting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 41-44.
    [7]QIN Tao, ZHANG Ke, DENG Jingyu, JIN Xin. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 33-36.
    [8]ZHANG Ke, WU Yixiong, LV Xueqin, JIN Xin. Real-time identification of heading angle based on least squares estimator for welding mobile robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 13-16.
    [9]LI Ruihua, MENG Guoxiang, GONG Liang, ZHANG Ke. Partial least square approach for multi-parameter assessment of resistance spot welding quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 49-52.
    [10]CAI Yan, YANG Hai-lan, XU Xin, WU Yi-xiong. Spatter model of CO2 arc welding based on partial least-square regression method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 125-128.

Catalog

    Article views (248) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return