Advanced Search
HE Lei, WANG Renfu, CHENG Yingjin, XUE Gang, MA Xiaoyang, ZHANG Huajun. Effect of TiO2 and Al2O3 on melting characteristics of CaO-SiO2-CaF2 base welding slag[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 7-13, 61. DOI: 10.12073/j.hjxb.20220616003
Citation: HE Lei, WANG Renfu, CHENG Yingjin, XUE Gang, MA Xiaoyang, ZHANG Huajun. Effect of TiO2 and Al2O3 on melting characteristics of CaO-SiO2-CaF2 base welding slag[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 7-13, 61. DOI: 10.12073/j.hjxb.20220616003

Effect of TiO2 and Al2O3 on melting characteristics of CaO-SiO2-CaF2 base welding slag

More Information
  • Received Date: June 15, 2022
  • Available Online: April 20, 2023
  • The effects of TiO2 and Al2O3 on the viscosity, melting temperature, and surface tension of CaO-SiO2-CaF2 base welding slag were studied. The phase and structure characteristics of quaternary slag were analyzed using XRD and Raman spectroscopy. The results show that increasing the TiO2 content can significantly decrease the viscosity, melting temperature, and surface tension of the welding slag, thereby improving the fluidity. With increasing Al2O3 content, the viscosity, melting temperature, and surface tension of the welding slag increase slightly at first and then decrease markedly. The viscosity of CaO-SiO2-CaF2-TiO2 and CaO-SiO2-CaF2-Al2O3 quaternary welding slag is below 0.2 Pa·s after complete melting, with no significant effect from increasing temperature. Below the melting temperature, the slag solidifies rapidly with decreasing temperature, exhibiting obvious short-slag characteristics. XRD and Raman spectroscopy results show that the quaternary welding slag mainly contains Ca4Si2O7F2, a high melting point phase with a silicate network structure. Adding TiO2 and Al2O3 can transform the silicate network structure into [SiO4]4− with a simple tetrahedral structure. CaTiO3 forms in slag containing TiO2. CaF2 phase and a small amount of Ca2Al(AlSiO7) form in slag containing Al2O3. Some sensitive ranges of TiO2 and Al2O3 content that greatly influence the melting characteristics of slag were found. This has certain reference significance for the formulation design of high-strength welding materials.
  • 张子荣, 李昇鹤. 电焊条. [M]. 北京: 机械工业出版社, 1996.

    Zhang Zirong, Li Shenghe. Welding electrode [M]. Beijing: China Machine Press, 1996.
    张敏, 舒绍燕, 芦晓康, 等. 熔渣成分和微观结构对自保护药芯焊丝脱渣性的影响[J]. 焊接学报, 2018, 39(2): 10 − 14.

    Zhang Min, Shu Shaoyan, Lu Xiaokang, et al. Effect of slag composition and microstructure on detachability of self-protected flux-cored wire[J]. Transactions of the China Welding Institution, 2018, 39(2): 10 − 14.
    张凯. 焊条熔渣微观结构及对焊条工艺性能的影响[D]. 济南: 山东建筑大学, 2011.

    Zhang Kai. Microstructure of welding slag and its effects on the usability of electrode[D]. Jinan: Shandong Jianzhu University, 2011.
    张敏, 王博玉, 许帅, 等. Cr 对 G520 不锈钢焊缝组织及力学性能的影响[J]. 焊接学报, 2021, 42(6): 52 − 57.

    Zhang Min, Wang Boyu, Xu Shuai, et al. Effect of Cr on microstructure and mechanical properties of G520 stainless steel weld[J]. Transactions of the China Welding Institution, 2021, 42(6): 52 − 57.
    Ju Jiantao, Yang Kangshuai, Ji Guangheng, et al. Effect of TiO2 on viscosity and structure of low-fluoride CaF2-CaO-Al2O3-MgO- Li2O slag for electroslag remelting[J]. Rare Metal Materials and Engineering, 2020, 49(11): 3676 − 3682.
    Tuset J, Tidsski K, Bergv K. High-temperature phase relations and thermodynamics in the iron-titanium-oxygen system[J]. Metallurgical & Materials Transactions B, 1999, 30(4): 695 − 705.
    张平, 马文会, 张士举, 等. TiO2-Ti2O3-FeO三元渣系黏流特性热力学模拟[J]. 中国有色金属学报, 2018, 28(9): 1876 − 1882.

    Zhang Ping, Ma Wenhui, Zhang Shiju, et al. Thermodynamic simulation of viscous flow characterisitics of TiO2-Ti2O3-FeO slag[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1876 − 1882.
    邓永春, 吴胜利, 姜银举, 等. La2O3-SiO2-Al2O3渣系的熔化温度及其影响因素[J]. 过程与工艺, 2017, 17(2): 357 − 361.

    Deng Yongchun, Wu Shengli, Jiang Yinju, et al. Melting temperature and its effect factors of La2O3-SiO2-Al2O3-based slag[J]. The Chinese Journal of Process Engineering, 2017, 17(2): 357 − 361.
    李生平, 吕学伟, 宋兵, 等. TiO2-FeO-(SiO2, CaO, MgO)三元渣系的流变特性[J]. 中国有色金属学报, 2016, 26(9): 2015 − 2022.

    Li Shengping, Lyu Xuewei, Song Bing, et al. Rheological property of TiO2-FeO-(SiO2, CaO, MgO) ternary slag[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(9): 2015 − 2022.
    李海新, 杨振林, 因子强, 等. TiO2对水下湿法焊接熔渣形貌及微观组织的影响[J]. 焊接学报, 2017, 38(4): 51 − 54. doi: 10.12073/j.hjxb.20170412

    Li Haixin, Yang Zhenlin, Yin Ziqiang, et al. Effect of TiO2 on morphology and microstructure of underwater wet welding slag[J]. Transactions of the China Welding Institution, 2017, 38(4): 51 − 54. doi: 10.12073/j.hjxb.20170412
    张文钺. 焊接冶金学(基本原理)[M]. 北京: 机械工业出社, 1999.

    Zhang Wenyue. Welding metallurgy (Basic Principles)[M]. Beijing: China Machine Press, 1999.
    Mysen B, Vigro D, Scarfe C. Relations between the anionic structure and viscosity of silicate melts-A Raman spectroscopic study[J]. American Mineralogist, 1980, 65(7-8): 690 − 710.
    Mysen B, Vigro D, Seifert F. Relationships between properties and structure of aluminosilicate melts[J]. American Mineralogist, 1985, 70(1-2): 88 − 105.
    Kim G H, Kim C S, Sohn I. Viscous behavior of alumina rich calcium-silicate based mold fluxes and its correlation to the melt structure[J]. ISIJ International, 2013, 53(1): 170 − 176. doi: 10.2355/isijinternational.53.170
    McMillan P F. Raman spectroscopy of calcium aluminate glasses and crystals[J]. Journal of Non-Crystalline Solids, 1983, 55(2): 221 − 242. doi: 10.1016/0022-3093(83)90672-5
    高金星, 文光华, 黄挺, 等. CaO-SiO2-Al2O3渣系连铸保护渣结构的拉曼光谱研究[J]. 光谱学与光谱分析, 2016, 36(10): 3190 − 3196.

    Gao Jinxing, Wen Guanghua, Huang Ting, et al. Raman spectroscopic study of the structure of CaO-SiO2-Al2O3-based flux[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3190 − 3196.
  • Related Articles

    [1]BAO Liangliang, PAN Chunyu, LIU Fujian, ZHANG Xinming, HAN Tao. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 90-97. DOI: 10.12073/j.hjxb.20210817001
    [2]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [3]CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
    [4]SHEN Yu, WAN Xiangliang, LIU Yu, LI Guangqiang, WU Kaiming. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 55-62. DOI: 10.12073/j.hjxb.2019400209
    [5]LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96.
    [6]WU Bingzhi, JING Wen, XU Yujun, SUN Jingtao, WANG Xuyou. Analysis on microstructure and impact absorbed energy of 960 MPa deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 77-80.
    [7]DU Bing, SUN Fenglian, XU Yujun, LI Xiaoyu, LÜ Xiaochun, QIN Jian. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 1-4.
    [8]HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71.
    [9]LIANG Guoli, YANG Shanwu, WU Huibin, LIU Xueli. Impact toughness of simulated CGHAZ with high heat input for adding trace Zr oil tank steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 85-88.
    [10]XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.

Catalog

    Article views (329) PDF downloads (71) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return