Advanced Search
TAN Pan, CHENG Chen, QIU Chengguo, LI Bangjin, YANG Donghua, CONG Wei, XU Huibin. Effect of offset value on microstructure and properties of aluminum/steel cutting-assisted welding brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 98-104. DOI: 10.12073/j.hjxb.20220523003
Citation: TAN Pan, CHENG Chen, QIU Chengguo, LI Bangjin, YANG Donghua, CONG Wei, XU Huibin. Effect of offset value on microstructure and properties of aluminum/steel cutting-assisted welding brazing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 98-104. DOI: 10.12073/j.hjxb.20220523003

Effect of offset value on microstructure and properties of aluminum/steel cutting-assisted welding brazing

More Information
  • Received Date: May 22, 2022
  • Available Online: March 27, 2023
  • The cutting-assisted welding brazing (CAWB) without flux, the effect of offset value of the 5052 aluminum alloy and SUS304 stainless steel was studied. Scanning electron microscope, energy dispersive spectroscopy and tensile testing machine were used to analyze the microstructure and mechanical properties of the welded joint. The results showed that metallurgical bonding occurs to the interface of aluminum/steel joints assisted by the cutting tool. Thickness of intermetallic compound layered at the interface and the number and size of phase particles of the weld increased with the growth in offset value. The joint strength first grew and then decreased with the increase of the offset value. With the increase of offset value, the interface morphology gradually evolved from flat interface to periodic wave interface, and finally to a laminated interface. When the offset value was 0.2 mm, the 'macro + micro' scale double self-locking interface structure was obtained, and the mechanical properties of the joint were improved. The average tensile strength of the joint was up to 152 MPa.
  • 苗玉刚, 李春旺, 尹晨豪, 等. 船用铝/钢焊接接头BC-MIG电弧增材制造工艺[J]. 焊接学报, 2019, 40(12): 129 − 132.

    Miao Yugang, Li Chunwang, Yin Chenhao, et al. Study on additive manufacturing of BC-MIG for marine aluminum/steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 129 − 132.
    石玗, 梁琪, 张刚, 等. 激光毛化对铝/钢电弧熔钎焊接头界面与性能的影响[J]. 焊接学报, 2020, 41(5): 25 − 29. doi: 10.12073/j.hjxb.20190916002

    Shi Yu, Liang Qi, Zhang Gang, et al. Effect of laser texturing on the interface and properties of aluminum/steel arc fusion brazed joints[J]. Transactions of the China Welding Institution, 2020, 41(5): 25 − 29. doi: 10.12073/j.hjxb.20190916002
    王晓虹, 谷晓燕, 孙大千. 钢/铝异种金属激光焊接头界面特性的研究[J]. 机械工程学报, 2017, 53(4): 26 − 33. doi: 10.3901/JME.2017.04.026

    Wan Xiaohong, Gu Xiaoyan, Sun Daqian. Research on interface characteristic of laser welding joints of steel/aluminum dissimilar materials[J]. Journal of Mechanical Engineering, 2017, 53(4): 26 − 33. doi: 10.3901/JME.2017.04.026
    张满, 张军, 蒋腾, 等. Fe-Al金属间化合物对铝/钢钎焊接头力学性能的影响[J]. 焊接学报, 2018, 39(1): 61 − 64. doi: 10.12073/j.hjxb.2018390014

    Zhang Man, Zhang Jun, Jiang Teng, et al. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. Transactions of the China Welding Institution, 2018, 39(1): 61 − 64. doi: 10.12073/j.hjxb.2018390014
    Kim Y J. Analysis of oxide film formed on type 304 stainless steel in 288 ℃ water containing oxygen, hydrogen, and hydrogen peroxide[J]. Corrosion, 1999, 55(1): 81 − 88. doi: 10.5006/1.3283969
    Song J L, Lin S B, Yang C L, et al. Effects of Si additions on intermetallic compound layer of aluminum-steel TIG welding-brazing joint[J]. Journal of Alloys and Compounds, 2009, 488(1): 217 − 222. doi: 10.1016/j.jallcom.2009.08.084
    Deng S, Yuan R, Tang X, et al. Migration behavior of IMC layer in twin-spot laser welding-brazing of aluminum to steel[J]. Materials & Design, 2020, 188: 108489.
    Xu H, Gao P, Cong W, et al. Arc joining of aluminum alloy to stainless steel with the aid of milling[J]. Materials Science and Technology, 2018, 35(5): 1 − 9.
    Xu H B, Cong W, Yang D H, et al. Microstructure and mechanical performance of dissimilar metal joints of aluminum alloy and stainless steel by cutting-assisted welding-brazing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(7-8): 4411 − 4421. doi: 10.1007/s00170-021-08452-x
    Budak E. Analytical models for high performance milling, Part I: Cutting forces, structural deformations and tolerance integrity[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13): 1478 − 1488. doi: 10.1016/j.ijmachtools.2005.09.009
    Gupta S P. Intermetallic compound formation in Fe-Al-Si ternary system: Part I[J]. Materials Characterization, 2002, 49(4): 269 − 291. doi: 10.1016/S1044-5803(03)00006-8
    Chen J, Amirkhiz B S, Zhang R, et al. On the joint formation and interfacial microstructure of cold metal transfer cycle step braze welding of aluminum to steel butt joint[J]. Metallurgical and Materials Transactions A, 2020, 51(10): 5198 − 5212. doi: 10.1007/s11661-020-05917-8
    王鹏潇. 5052铝合金/钢熔钎焊界面反应行为的研究[D]. 大连: 大连理工大学, 2019.

    Wang Pengxiao. The study on aluminum/steel interface layer based on synchrotron radiation [D]. Dalian: Dalian University of Technology, 2019.
    李军兆. 磁场辅助钛/铝异种金属MIG熔-钎焊工艺及机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Li Junzhao. Research on process and mechanism of magnetic field assisted MIG welding-brazing for Ti/Al dissimilar alloys [D]. Harbin: Harbin Institute of Technology, 2017.
    Kim B G, Dong S L, Park S D. Effects of thermal processing on thermal expansion coefficient of a 50 vol.% SiCp/Al composite[J]. Materials Chemistry and Physics, 2001, 72(1): 42 − 47. doi: 10.1016/S0254-0584(01)00306-6
    Rivera J, Hosseini M S, Restrepo D, et al. Toughening mechanisms of the elytra of the diabolical ironclad beetle[J]. Nature, 2020, 586: 543 − 548. doi: 10.1038/s41586-020-2813-8
  • Related Articles

    [1]FAN Wenxue, CHEN Furong. Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001
    [2]AN Tong, QIN Fei, WANG Xiaoliang. Effect of strain rate on mechanical behavior of lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 59-62.
    [3]ZHOU Liucheng, ZHOU Lei, LI Yinghong, WANG Cheng. Effect of laser shock processing on tensile strength of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 52-54,58.
    [4]JIANG Qinglei, LI Yajiang, WANG Juan, XU Zonglin, FU Jinliang. Strength matching on mechanical properties of welded joint of Q550 high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 65-68.
    [5]GANG Tie, ZHAO Xuemei, LIN Sanbao, LUAN Yilin. Non-destructive evaluation of FSW tensile property[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 1-4.
    [6]XUE Song-bai, WU Yu-xiu, CUI Guo-ping, ZHANG Ling. Numerical simulation of effect of thermal cycling on tensile strength and microstructure of QFP soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 1-4.
    [7]YAO Li-hua, XUE Song-bai, WANG Peng, LIU Lin. Effect of diode-laser parameters on tensile strength of QFP micro-joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 90-92.
    [8]HU Yong-fang, XUE Song-bai, YU Sheng-lin. Study on strength of soldered micro-joints of QFP devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 78-80.
    [9]HU Yong-fang, XUE Song-bai, SHI Yi-ping, YU Sheng-lin. Effects of lead-free solder on the tensile strength of QFP micro-joints soldered with different pitchs[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 72-74.
    [10]ZHU Liang, CHEN Jian-hang. Characteristics of stress distribution and prediction of strength inheat-affected zone softened welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 48-51.
  • Cited by

    Periodical cited type(8)

    1. 孙康,肖笑,石红信,符成学,内田成明. 钛合金电弧增材制造温度与残余应力数值模拟. 材料热处理学报. 2025(04): 202-210 .
    2. 李敬勇,李超然,徐育烺,钱鹏. 层间温度对CMT电弧增材制造2Cr13不锈钢薄壁件成形及组织和性能影响. 焊接. 2024(02): 43-50 .
    3. 张云舒,吴斌涛,赵昀,丁东红,潘增喜,李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望. 机械工程学报. 2024(08): 65-80 .
    4. 张云舒,郑登勇,邵丹丹,徐晖,徐仁,吴斌涛. 层间强制冷却对电弧熔丝增材制造钛合金温度场和流场的影响. 西北工程技术学报. 2024(03): 199-205+213 .
    5. 王磊磊,吕飞阅,高转妮,虞文军,高川云,占小红. 电弧增材制造2319铝合金交叉桁条结构微观组织与拉伸性能研究. 机械工程学报. 2023(01): 267-277 .
    6. 贾金龙,张佳,杜明科,蒋成燕,冯毅. SUS304奥氏体不锈钢TIG焊电弧增材制造工艺优化. 机械制造文摘(焊接分册). 2023(01): 1-6 .
    7. 邸艳艳,胡仁志,熊逸博,郑志镇,李建军. 电弧熔丝增材制造316L的温度场仿真及对基体的影响. 电焊机. 2022(01): 63-67 .
    8. 刘理想,柏兴旺,周祥曼,张海鸥. 电弧增材制造多层单道堆积的焊道轮廓模型函数. 焊接学报. 2020(06): 24-29+36+98 . 本站查看

    Other cited types(12)

Catalog

    Article views (209) PDF downloads (33) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return