Citation: | Rui MA, Linchuan LIU, Yajun WANG, Jie BAI, Caiwang TAN, Xiaoguo SONG. Effect of solution temperature on the microstructure evolution and mechanical properties of laser powder bed melting GH3536 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 73-79. DOI: 10.12073/j.hjxb.20220504002 |
顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32 − 55.
Gu Dongdong, Zhang Hongmei, Cheng Hongyu, et al. Aerospace laser additive manufacturing of high performance metal components[J]. Chinese Journal of Lasers, 2020, 47(5): 32 − 55.
|
Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review[J]. Materials & Design, 2021(12): 110008.
|
Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(11): 2132 − 2147. doi: 10.1177/0954410014568797
|
Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, et al. The potential of additive manufacturing in the smart factory industrial 4.0: A review[J]. Applied Sciences, 2019, 9(18): 3865. doi: 10.3390/app9183865
|
Marudhappan R, Chandrasekhar U. Additive manufacturing in india aerospace manufacturing and MRO industry: challenges and opportunities[J]. Journal of the Institution of Engineers (India): Series C, 2022, 103(6): 1 − 18.
|
王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报:纳米与新材料专辑, 2011, 25(2): 482 − 486.
Wang Huiyang, An Yunqi, Li Chengyu, et al. Research progress of nickel-based superalloy materials[J]. Materials Reports:Nano and New Materials Album, 2011, 25(2): 482 − 486.
|
Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401 − 477. doi: 10.1016/j.pmatsci.2015.03.002
|
Zhou X, Dai N, Chu M, et al. X-ray CT analysis of the influence of process on defect in Ti-6Al-4V parts produced with selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(1-2): 3 − 14. doi: 10.1007/s00170-019-04347-0
|
巴培培, 董志宏, 张炜, 等. 选区激光熔化成形 12CrNi2 合金钢的显微组织和力学性能[J]. 焊接学报, 2021, 42(8): 8 − 17.
Ba Peipei, Dong Zhihong, Zhang Wei, et al. Microstructure and mechanical properties of selective laser melting 12CrNi2 alloy steel[J]. Transactions of the China Welding Institution, 2021, 42(8): 8 − 17.
|
Prasad K, Obana M, Yuki I, et al. The effect of laser scanning strategies on the microstructure, texture and crystallography of grains exhibiting hot cracks in 3D additively manufactured Hastelloy X[J]. Mechanics of Materials, 2021, 157: 103816. doi: 10.1016/j.mechmat.2021.103816
|
Masuo H, Tanaka Y, Morokoshi S, et al. Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J]. International Journal of Fatigue, 2018, 117: 163 − 179. doi: 10.1016/j.ijfatigue.2018.07.020
|
Sanaei N, Fatemi A, Phan N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing[J]. Materials & Design, 2019, 182: 108091.
|
Gao Mengqiu, Zhao Yuhui, Zhao Jibin, et al. Influence of matrix temperature state on surface quality during interactive additive and subtractive manufacturing[J]. Chinese Journal of Lasers, 2020, 47(8): 0802011. doi: 10.3788/CJL202047.0802011
|
郝铭淞, 刘丽荣, 李金国, 等. 热处理对激光熔化沉积成形GH3536合金组织演变的影响[J]. 铸造, 2021, 70(11): 1295 − 1301. doi: 10.3969/j.issn.1001-4977.2021.11.007
Hao Mingsong, Liu Lirong, Li Jinguo, et al. Effect of heat treatment on microstructure evolution of GH3536 alloy formed by laser melting deposition[J]. Foundry, 2021, 70(11): 1295 − 1301. doi: 10.3969/j.issn.1001-4977.2021.11.007
|
王帅, 付立铭, 袁勇, 等. NiFe基合金激光增材制造热裂纹形成机理及调控[J]. 焊接学报, 2022, 43(5): 8 − 13.
Wang Shuai, Fu Liming, Yuan Yong, et al. Mechanism and control of hot crack formation in laser additive manufacturing of base alloy[J]. Transactions of the China Welding Institution 2022, 2022, 43(5): 8 − 13.
|
孙闪闪, 滕庆, 程坦, 等. 热处理对激光选区熔化GH3536合金组织演变规律的影响研究[J]. 机械工程学报, 2020, 56(21): 208 − 218. doi: 10.3901/JME.2020.21.208
Sun Shanshan, Teng Qing, Cheng Tan, et al. Effect of heat treatment on microstructure evolution of GH3536 alloy by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(21): 208 − 218. doi: 10.3901/JME.2020.21.208
|
Sun S, Teng Q, Xie Y, et al. Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility[J]. Additive Manufacturing, 2021, 46(1): 102168.
|
Montero-Sistiaga M L, Dhansay N M, Bautmans L, et al. Fatigue performance of micro-crack free Hastelloy X produced by selective laser melting (SLM)[J]. ESIAM19, 2019, 177: 9 − 11.
|
[1] | HAN Xiaohui, LI Shuaizhen, WU Laijun, TAN Caiwang, LI Gangqing, SONG Xiaoguo. Effects of surface layer microstructure on liquation crack and fatigue properties of 6005A aluminum alloy MIG joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 14-20. DOI: 10.12073/j.hjxb.20210825004 |
[2] | WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001 |
[3] | JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002 |
[4] | JI Hua, DENG Yunlai, DENG Jianfeng, XU Hongyong, LIN Sen. Effect of welding speed on mechanical properties of bobbin tool friction stir welded 6005A-T6 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 24-29. DOI: 10.12073/j.hjxb.2019400122 |
[5] | JI Kai, ZHANG Jing, XU Yusong. Fatigue properties of welded joints of New 6005A alloy with high copper content[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 95-98. |
[6] | DAI Qilei, MENG Lichun, LIANG Zhifang, WU Jianjun, SHI Qingyu. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 9-12,38. |
[7] | LÜ Xiaochun, LEI Zhen, ZHANG Jian, ZHANG Lihua. Study on the softening of 6005A-T6 aluminum alloy welding joints for high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 25-29. |
[8] | ZHU Xiaogang, WANG Lianfeng, QIAO Fengbin, GUO Lijie. Fatigue failure analysis of 6061-T6 aluminum alloy refilled friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 91-94. |
[9] | ZHANG Jian, LEI Zhen, WANG Xuyou. Weld hot crack analysis of 6005A aluminum alloy profile for high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 60-64. |
[10] | WANG Xijing, LI Shuwei, NIU Yong, Zhang Jie. Fatigue crack growth rate of A7075 FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 5-7. |
1. |
刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
![]() | |
2. |
税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
![]() | |
3. |
刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
![]() | |
4. |
代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 .
![]() | |
5. |
王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
![]() | |
6. |
甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
![]() | |
7. |
陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
![]() | |
8. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
9. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
10. |
张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 .
![]() |