Advanced Search
Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001
Citation: Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001

Application and development of numerical simulation technology in laser welding process

More Information
  • Received Date: April 29, 2022
  • Available Online: August 02, 2022
  • Laser welding has become an advanced method in joining materials with high quality due to its high efficiency and high precision. Multi-physical field issues are involved during laser welding process, such as absorption and reflection of laser energy, melting and evaporation of materials, flow of molten pool, fluctuation of keyhole and etc. Establishment of numerical model to reflect the feature of thermal process, and further quantitative description to elucidate key factors and evolution process affecting the laser welding quality, can provide theoretical support and scientific path for high quality laser welding and manufacturing. From the aspect of welding defects, microstructural evolution and residual stress that influences formation quality and service property of laser welds, this paper elaborates the application and development of numerical simulation technology in fundamental problem research of laser welding.
  • 武传松, 孟祥萌, 陈姬, 等. 熔焊热过程与熔池行为数值模拟的研究进展[J]. 机械工程学报, 2018, 54(2): 1 − 15. doi: 10.3901/JME.2018.02.001

    Wu Chuansong, Meng Xiangmeng, Chen Ji, et al. Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding[J]. Journal of Mechanical Engineering, 2018, 54(2): 1 − 15. doi: 10.3901/JME.2018.02.001
    裴莹蕾, 单际国, 任家烈. 不锈钢薄板高速激光焊驼峰焊道形成倾向及其影响因素[J]. 金属学报, 2012, 48(12): 1431 − 1436. doi: 10.3724/SP.J.1037.2012.00416

    Pei Yinglei, Shan Jiguo, Ren Jialie. Study of humping tendency and affecting factors in high speed laser welding of stainless steel sheet[J]. Acta Metallurgica Sinica, 2012, 48(12): 1431 − 1436. doi: 10.3724/SP.J.1037.2012.00416
    Deng S, Wang H P, Lu F, et al. Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels[J]. International Journal of Heat and Mass Transfer, 2019, 140: 269 − 280. doi: 10.1016/j.ijheatmasstransfer.2019.06.009
    Zhang C, Yu Y, Chen C, et al. Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 2020, 278: 116382.
    Han Y, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
    Otto A, Patschger A, Seiler M. Numerical and experimental investigations of humping phenomena in laser micro welding[J]. Physics Procedia, 2016, 83: 1415 − 1423. doi: 10.1016/j.phpro.2016.09.004
    Zhang M, Liu T, Hu R, et al. Understanding root humping in high-power laser welding of stainless steels: a combination approach[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11): 5353 − 5364.
    Bachmann M, Avilov V, Gumenyuk A, et al. Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support[J]. Journal of Physics D:Applied Physics, 2011, 45(3): 035201.
    Bachmann M, Avilov V, Gumenyuk A, et al. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214(3): 578 − 591.
    Cho W I, Woizeschke P. Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120623.
    Zhao H, Niu W, Zhang B, et al. Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding[J]. Journal of Physics D:Applied Physics, 2011, 44(48): 485302. doi: 10.1088/0022-3727/44/48/485302
    Pang S, Chen X, Zhou J, et al. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering, 2015, 74: 47 − 58. doi: 10.1016/j.optlaseng.2015.05.003
    Pang S, Chen X, Shao X, et al. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity[J]. Optics and Lasers in Engineering, 2016, 82: 28 − 40.
    Lu F, Li X, Li Z, et al. Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling[J]. International Journal of Heat and Mass Transfer, 2015, 90: 1143 − 1152. doi: 10.1016/j.ijheatmasstransfer.2015.07.041
    Li X, Lu F, Cui H, et al. Numerical modeling on the formation process of keyhole-induced porosity for laser welding steel with T-joint[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(1-4): 241 − 254.
    Huang L, Hua X, Wu D, et al. Effect of magnesium content on keyhole-induced porosity formation and distribution in aluminum alloys laser welding[J]. Journal of Manufacturing Processes, 2018, 33: 43 − 53. doi: 10.1016/j.jmapro.2018.04.023
    Huang L, Hua X, Wu D, et al. Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel[J]. Journal of Materials Processing Technology, 2018, 252: 421 − 431.
    Shi L, Li X, Jiang L, et al. Numerical study of keyhole-induced porosity suppression mechanism in laser welding with beam oscillation[J]. Science and Technology of Welding and Joining, 2021, 26(5): 349 − 355. doi: 10.1080/13621718.2021.1913562
    Zhang C, Li X, Gao M. Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool[J]. Journal of Materials Research and Technology, 2020, 9(4): 9271 − 9282.
    Hugger F, Hofmann K, Kohl S, et al. Spatter formation in laser beam welding using laser beam oscillation[J]. Welding in the World, 2015, 59(2): 165 − 172. doi: 10.1007/s40194-014-0189-9
    Chang B, Blackburn J, Allen C, et al. Studies on the spatter behaviour when welding AA5083 with a Yb-fibre laser[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9): 1769 − 1776.
    Wu D, Hua X, Huang L, et al. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminum alloy at full penetration condition[J]. Optics & Laser Technology, 2018, 100: 157 − 164.
    Hao Y, Chen N, Wang H P, et al. Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels[J]. Journal of Materials Processing Technology, 2021, 298: 117282.
    Hao Y, Wang H P, Sun Y, et al. The evaporation behavior of zinc and its effect on spattering in laser overlap welding of galvanized steels[J]. Journal of Materials Processing Technology, 2022, 306: 117625. doi: 10.1016/j.jmatprotec.2022.117625
    Hao Y, Li L, Sun Y, et al. Dynamic behavior of keyhole and molten pool under different oscillation paths for galvanized steel laser welding[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122947. doi: 10.1016/j.ijheatmasstransfer.2022.122947
    Qi Y, Chen G, Liu D. Droplet spatter suppression in laser lap welding of galvanized sheets using additional coaxial annular laser source[J]. Optics & Laser Technology, 2022, 149: 107902.
    Gu H, Wei C, Li L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119458. doi: 10.1016/j.ijheatmasstransfer.2020.119458
    Yao L, Huang S, Ramamurty U, et al. On the formation of "Fish-scale" morphology with curved grain interfacial microstructures during selective laser melting of dissimilar alloys[J]. Acta Materialia, 2021, 220: 117331.
    Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys[J]. Acta Materialia, 2012, 60(4): 1633 − 1646. doi: 10.1016/j.actamat.2011.12.009
    Mi G, Xiong L, Wang C, et al. Two-dimensional phase-field simulations of competitive dendritic growth during laser welding[J]. Materials & Design, 2019, 181: 107980.
    Geng S, Jiang P, Shao X, et al. Comparison of solidification cracking susceptibility between Al-Mg and Al-Cu alloys during welding: A phase-field study[J]. Scripta Materialia, 2018, 150: 120 − 124. doi: 10.1016/j.scriptamat.2018.03.013
    Geng S, Jiang P, Shao X, et al. Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding: A phase-field study[J]. Acta Materialia, 2018, 160: 85 − 96. doi: 10.1016/j.actamat.2018.08.057
    Ao X, Xia H, Liu J, et al. Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton[J]. Materials & Design, 2020, 185: 108230.
    Shi R, Khairallah S A, Roehling T T, et al. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy[J]. Acta Materialia, 2020, 184: 284 − 305. doi: 10.1016/j.actamat.2019.11.053
    Liu S, Hong K M, Shin Y C. A novel 3D cellular automata-phase field model for computationally efficient dendrite evolution during bulk solidification[J]. Computational Materials Science, 2021, 192: 110405. doi: 10.1016/j.commatsci.2021.110405
    Zhang Z, Wu C. Monte Carlo simulation of grain growth in heat-affected zone of 12wt.% Cr ferritic stainless steel hybrid welds[J]. Computational Materials Science, 2012, 65: 442 − 449. doi: 10.1016/j.commatsci.2012.07.040
    Gleason G, Sunny S, Mathews R, et al. Numerical investigation of the transient interfacial material behavior during laser impact welding[J]. Scripta Materialia, 2022, 208: 114325.
    Sunny S, Gleason G, Mathews R, et al. Simulation of laser impact welding for dissimilar additively manufactured foils considering influence of inhomogeneous microstructure[J]. Materials & Design, 2021, 198: 109372.
    桂晓燕, 张艳喜, 游德勇, 等. 激光电弧复合焊接顺序对304不锈钢T形接头影响的模拟试验分析[J]. 焊接学报, 2021, 42(12): 34 − 39. doi: 10.12073/j.hjxb.20210324005

    Gui Xiaoyan, Zhang Yanxi, You Deyong, et al. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. Transactions of the China Welding Institution, 2021, 42(12): 34 − 39. doi: 10.12073/j.hjxb.20210324005
    Sun J, Liu X, Tong Y, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding[J]. Materials & Design, 2014, 63: 519 − 530.
    逯世杰, 郑颖, 王虎, 等. SUS304 不锈钢薄板激光焊与惰性气体保护焊的焊接变形和残余应力的比较[J]. 激光杂志, 2019, 40(11): 144 − 149.

    Lu Shijie, Zheng Ying, Wang Hu, et al. A comparative study on welding deformations and residual stress distribution of SUS304 stainless steel induced by laser beam welding and metal inert-gas welding[J]. Laser Journal, 2019, 40(11): 144 − 149.
    Huang H, Tsutsumi S, Wang J, et al. High performance computation of residual stress and distortion in laser welded 301L stainless sheets[J]. Finite Elements in Analysis and Design, 2017, 135: 1 − 10. doi: 10.1016/j.finel.2017.07.004
    Xu G, Pan H, Liu P, et al. Finite element analysis of residual stress in hybrid laser-arc welding for butt joint of 12 mm-thick steel plate[J]. Welding in the World, 2018, 62(2): 289 − 300. doi: 10.1007/s40194-017-0545-7
    Yan S, Meng Z, Chen B, et al. Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel[J]. Optics & Laser Technology, 2022, 145: 107493.
    Deng D, Kiyoshima S. Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences[J]. Nuclear Engineering and Design, 2010, 240(4): 688 − 696. doi: 10.1016/j.nucengdes.2009.11.049
    Elmesalamy A, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels and Piping, 2014, 113: 49 − 59. doi: 10.1016/j.ijpvp.2013.11.002
    窦恩惠. 铝锂合金T型接头双光束激光焊接工艺及变形控制[D]. 天津: 天津大学, 2018.

    Dou Enhui. Two-side and two-beam laser welding process and deformation control of aluminum-lithium alloy T-welded joints[D]. Tianjin: Tianjin University, 2018.
    Li C, Ding F, Yu X, et al. Residual stress and welding distortion of Al/steel butt joint by arc-assisted laser welding-brazing[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 692 − 700. doi: 10.1016/S1003-6326(19)64979-4
  • Related Articles

    [1]WAN Jin, LI Jia, LIN Shaoxiong. Numerical simulation analysis of welding residual stresses in spherical tank[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 89-94.
    [2]LU Qinghua, CHEN Ligong, NI Chunzhen, YU Zhishui. Welding residual stress under different vibration conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 69-72.
    [3]LIU Junyan, LU Hao, CHEN Junmei. Thermal-mechano-metallurgical coupled analysis of welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 95-98.
    [4]LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part II:application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 33-36.
    [5]CHENG Jiangbo, LIANG Xiubing, CHEN Yongxiong, LIU Yan, XU Binshi, WU Yixiong. Residual stress in electric arc sprayed coatings for remanufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 17-20.
    [6]ZHOU Jian-xin, XU Hong, WANG Jun-sheng, LI Dong-cai, ZHANG Li, LIU A-long. Effect of specimen dimension on welding residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 96-100.
    [7]CHAIPeng, LUAN Guo-hong, GUO De-lun, LI Ju. Distribution and control of residual stresses in FSW joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 79-82.
    [8]RAO De-lin, CHEN Li-gong, NI Chun-zhen, ZHU Zheng-qiang.. Effect of ultrasonic impact treatment on residual stress of welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (4): 48-50,64.
    [9]Cai jie, Wang Yuanliang, Chen Mingming. Measurement of residual stress in big weldment and vibraticn stress relieving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (2): 89-95.
    [10]Wang Weirong. A STUDY OF THE MEASURING METHODS OF RESIDUAL WELDING STRESSES[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (3): 181-187.
  • Cited by

    Periodical cited type(6)

    1. 张宇轩,张明军,李河清,张健,程波,毛聪,成双银. 动力电池用铝/铜异种金属红外—蓝激光复合焊接试验. 焊接学报. 2025(01): 87-94 . 本站查看
    2. 史颖杰,崔泽琴,丁正祥,郝晓虎,王文先,李卫国. 铝/铜蓝-红激光复合焊接头组织及性能. 焊接学报. 2024(03): 54-60+131-132 . 本站查看
    3. 杜道忠,张超,周宇浩. 激光功率对铝/铜激光熔钎焊接头组织及性能的影响. 机械工程材料. 2024(05): 26-32 .
    4. 王佳杰,宋晓国,武鹏博,胡佩佩,滕彬,黄瑞生,于久灏. 铝/钛异种金属激光/激光-CMT复合熔钎焊工艺及其组织与力学性能. 焊接学报. 2023(02): 54-60+132 . 本站查看
    5. 孙茜,王佳乐,周兴汶,王晓南. 镍/铜箔回流焊与激光钎焊界面显微组织与性能. 焊接学报. 2023(12): 35-40+139 . 本站查看
    6. 于江,潘俊林,苗惺林,张洪涛,高建国,苏昭方. 铝/铜异种金属电阻热辅助超声波缝焊工艺特性. 焊接学报. 2022(07): 76-81+117-118 . 本站查看

    Other cited types(7)

Catalog

    Article views (644) PDF downloads (125) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return