Citation: | Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001 |
武传松, 孟祥萌, 陈姬, 等. 熔焊热过程与熔池行为数值模拟的研究进展[J]. 机械工程学报, 2018, 54(2): 1 − 15. doi: 10.3901/JME.2018.02.001
Wu Chuansong, Meng Xiangmeng, Chen Ji, et al. Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding[J]. Journal of Mechanical Engineering, 2018, 54(2): 1 − 15. doi: 10.3901/JME.2018.02.001
|
裴莹蕾, 单际国, 任家烈. 不锈钢薄板高速激光焊驼峰焊道形成倾向及其影响因素[J]. 金属学报, 2012, 48(12): 1431 − 1436. doi: 10.3724/SP.J.1037.2012.00416
Pei Yinglei, Shan Jiguo, Ren Jialie. Study of humping tendency and affecting factors in high speed laser welding of stainless steel sheet[J]. Acta Metallurgica Sinica, 2012, 48(12): 1431 − 1436. doi: 10.3724/SP.J.1037.2012.00416
|
Deng S, Wang H P, Lu F, et al. Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels[J]. International Journal of Heat and Mass Transfer, 2019, 140: 269 − 280. doi: 10.1016/j.ijheatmasstransfer.2019.06.009
|
Zhang C, Yu Y, Chen C, et al. Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 2020, 278: 116382.
|
Han Y, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
|
Otto A, Patschger A, Seiler M. Numerical and experimental investigations of humping phenomena in laser micro welding[J]. Physics Procedia, 2016, 83: 1415 − 1423. doi: 10.1016/j.phpro.2016.09.004
|
Zhang M, Liu T, Hu R, et al. Understanding root humping in high-power laser welding of stainless steels: a combination approach[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11): 5353 − 5364.
|
Bachmann M, Avilov V, Gumenyuk A, et al. Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support[J]. Journal of Physics D:Applied Physics, 2011, 45(3): 035201.
|
Bachmann M, Avilov V, Gumenyuk A, et al. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214(3): 578 − 591.
|
Cho W I, Woizeschke P. Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120623.
|
Zhao H, Niu W, Zhang B, et al. Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding[J]. Journal of Physics D:Applied Physics, 2011, 44(48): 485302. doi: 10.1088/0022-3727/44/48/485302
|
Pang S, Chen X, Zhou J, et al. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering, 2015, 74: 47 − 58. doi: 10.1016/j.optlaseng.2015.05.003
|
Pang S, Chen X, Shao X, et al. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity[J]. Optics and Lasers in Engineering, 2016, 82: 28 − 40.
|
Lu F, Li X, Li Z, et al. Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling[J]. International Journal of Heat and Mass Transfer, 2015, 90: 1143 − 1152. doi: 10.1016/j.ijheatmasstransfer.2015.07.041
|
Li X, Lu F, Cui H, et al. Numerical modeling on the formation process of keyhole-induced porosity for laser welding steel with T-joint[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(1-4): 241 − 254.
|
Huang L, Hua X, Wu D, et al. Effect of magnesium content on keyhole-induced porosity formation and distribution in aluminum alloys laser welding[J]. Journal of Manufacturing Processes, 2018, 33: 43 − 53. doi: 10.1016/j.jmapro.2018.04.023
|
Huang L, Hua X, Wu D, et al. Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel[J]. Journal of Materials Processing Technology, 2018, 252: 421 − 431.
|
Shi L, Li X, Jiang L, et al. Numerical study of keyhole-induced porosity suppression mechanism in laser welding with beam oscillation[J]. Science and Technology of Welding and Joining, 2021, 26(5): 349 − 355. doi: 10.1080/13621718.2021.1913562
|
Zhang C, Li X, Gao M. Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool[J]. Journal of Materials Research and Technology, 2020, 9(4): 9271 − 9282.
|
Hugger F, Hofmann K, Kohl S, et al. Spatter formation in laser beam welding using laser beam oscillation[J]. Welding in the World, 2015, 59(2): 165 − 172. doi: 10.1007/s40194-014-0189-9
|
Chang B, Blackburn J, Allen C, et al. Studies on the spatter behaviour when welding AA5083 with a Yb-fibre laser[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9): 1769 − 1776.
|
Wu D, Hua X, Huang L, et al. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminum alloy at full penetration condition[J]. Optics & Laser Technology, 2018, 100: 157 − 164.
|
Hao Y, Chen N, Wang H P, et al. Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels[J]. Journal of Materials Processing Technology, 2021, 298: 117282.
|
Hao Y, Wang H P, Sun Y, et al. The evaporation behavior of zinc and its effect on spattering in laser overlap welding of galvanized steels[J]. Journal of Materials Processing Technology, 2022, 306: 117625. doi: 10.1016/j.jmatprotec.2022.117625
|
Hao Y, Li L, Sun Y, et al. Dynamic behavior of keyhole and molten pool under different oscillation paths for galvanized steel laser welding[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122947. doi: 10.1016/j.ijheatmasstransfer.2022.122947
|
Qi Y, Chen G, Liu D. Droplet spatter suppression in laser lap welding of galvanized sheets using additional coaxial annular laser source[J]. Optics & Laser Technology, 2022, 149: 107902.
|
Gu H, Wei C, Li L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119458. doi: 10.1016/j.ijheatmasstransfer.2020.119458
|
Yao L, Huang S, Ramamurty U, et al. On the formation of "Fish-scale" morphology with curved grain interfacial microstructures during selective laser melting of dissimilar alloys[J]. Acta Materialia, 2021, 220: 117331.
|
Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys[J]. Acta Materialia, 2012, 60(4): 1633 − 1646. doi: 10.1016/j.actamat.2011.12.009
|
Mi G, Xiong L, Wang C, et al. Two-dimensional phase-field simulations of competitive dendritic growth during laser welding[J]. Materials & Design, 2019, 181: 107980.
|
Geng S, Jiang P, Shao X, et al. Comparison of solidification cracking susceptibility between Al-Mg and Al-Cu alloys during welding: A phase-field study[J]. Scripta Materialia, 2018, 150: 120 − 124. doi: 10.1016/j.scriptamat.2018.03.013
|
Geng S, Jiang P, Shao X, et al. Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding: A phase-field study[J]. Acta Materialia, 2018, 160: 85 − 96. doi: 10.1016/j.actamat.2018.08.057
|
Ao X, Xia H, Liu J, et al. Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton[J]. Materials & Design, 2020, 185: 108230.
|
Shi R, Khairallah S A, Roehling T T, et al. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy[J]. Acta Materialia, 2020, 184: 284 − 305. doi: 10.1016/j.actamat.2019.11.053
|
Liu S, Hong K M, Shin Y C. A novel 3D cellular automata-phase field model for computationally efficient dendrite evolution during bulk solidification[J]. Computational Materials Science, 2021, 192: 110405. doi: 10.1016/j.commatsci.2021.110405
|
Zhang Z, Wu C. Monte Carlo simulation of grain growth in heat-affected zone of 12wt.% Cr ferritic stainless steel hybrid welds[J]. Computational Materials Science, 2012, 65: 442 − 449. doi: 10.1016/j.commatsci.2012.07.040
|
Gleason G, Sunny S, Mathews R, et al. Numerical investigation of the transient interfacial material behavior during laser impact welding[J]. Scripta Materialia, 2022, 208: 114325.
|
Sunny S, Gleason G, Mathews R, et al. Simulation of laser impact welding for dissimilar additively manufactured foils considering influence of inhomogeneous microstructure[J]. Materials & Design, 2021, 198: 109372.
|
桂晓燕, 张艳喜, 游德勇, 等. 激光电弧复合焊接顺序对304不锈钢T形接头影响的模拟试验分析[J]. 焊接学报, 2021, 42(12): 34 − 39. doi: 10.12073/j.hjxb.20210324005
Gui Xiaoyan, Zhang Yanxi, You Deyong, et al. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. Transactions of the China Welding Institution, 2021, 42(12): 34 − 39. doi: 10.12073/j.hjxb.20210324005
|
Sun J, Liu X, Tong Y, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding[J]. Materials & Design, 2014, 63: 519 − 530.
|
逯世杰, 郑颖, 王虎, 等. SUS304 不锈钢薄板激光焊与惰性气体保护焊的焊接变形和残余应力的比较[J]. 激光杂志, 2019, 40(11): 144 − 149.
Lu Shijie, Zheng Ying, Wang Hu, et al. A comparative study on welding deformations and residual stress distribution of SUS304 stainless steel induced by laser beam welding and metal inert-gas welding[J]. Laser Journal, 2019, 40(11): 144 − 149.
|
Huang H, Tsutsumi S, Wang J, et al. High performance computation of residual stress and distortion in laser welded 301L stainless sheets[J]. Finite Elements in Analysis and Design, 2017, 135: 1 − 10. doi: 10.1016/j.finel.2017.07.004
|
Xu G, Pan H, Liu P, et al. Finite element analysis of residual stress in hybrid laser-arc welding for butt joint of 12 mm-thick steel plate[J]. Welding in the World, 2018, 62(2): 289 − 300. doi: 10.1007/s40194-017-0545-7
|
Yan S, Meng Z, Chen B, et al. Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel[J]. Optics & Laser Technology, 2022, 145: 107493.
|
Deng D, Kiyoshima S. Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences[J]. Nuclear Engineering and Design, 2010, 240(4): 688 − 696. doi: 10.1016/j.nucengdes.2009.11.049
|
Elmesalamy A, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels and Piping, 2014, 113: 49 − 59. doi: 10.1016/j.ijpvp.2013.11.002
|
窦恩惠. 铝锂合金T型接头双光束激光焊接工艺及变形控制[D]. 天津: 天津大学, 2018.
Dou Enhui. Two-side and two-beam laser welding process and deformation control of aluminum-lithium alloy T-welded joints[D]. Tianjin: Tianjin University, 2018.
|
Li C, Ding F, Yu X, et al. Residual stress and welding distortion of Al/steel butt joint by arc-assisted laser welding-brazing[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 692 − 700. doi: 10.1016/S1003-6326(19)64979-4
|
[1] | WAN Jin, LI Jia, LIN Shaoxiong. Numerical simulation analysis of welding residual stresses in spherical tank[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 89-94. |
[2] | LU Qinghua, CHEN Ligong, NI Chunzhen, YU Zhishui. Welding residual stress under different vibration conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 69-72. |
[3] | LIU Junyan, LU Hao, CHEN Junmei. Thermal-mechano-metallurgical coupled analysis of welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 95-98. |
[4] | LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part II:application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 33-36. |
[5] | CHENG Jiangbo, LIANG Xiubing, CHEN Yongxiong, LIU Yan, XU Binshi, WU Yixiong. Residual stress in electric arc sprayed coatings for remanufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 17-20. |
[6] | ZHOU Jian-xin, XU Hong, WANG Jun-sheng, LI Dong-cai, ZHANG Li, LIU A-long. Effect of specimen dimension on welding residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 96-100. |
[7] | CHAIPeng, LUAN Guo-hong, GUO De-lun, LI Ju. Distribution and control of residual stresses in FSW joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 79-82. |
[8] | RAO De-lin, CHEN Li-gong, NI Chun-zhen, ZHU Zheng-qiang.. Effect of ultrasonic impact treatment on residual stress of welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (4): 48-50,64. |
[9] | Cai jie, Wang Yuanliang, Chen Mingming. Measurement of residual stress in big weldment and vibraticn stress relieving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (2): 89-95. |
[10] | Wang Weirong. A STUDY OF THE MEASURING METHODS OF RESIDUAL WELDING STRESSES[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (3): 181-187. |
1. |
张宇轩,张明军,李河清,张健,程波,毛聪,成双银. 动力电池用铝/铜异种金属红外—蓝激光复合焊接试验. 焊接学报. 2025(01): 87-94 .
![]() | |
2. |
史颖杰,崔泽琴,丁正祥,郝晓虎,王文先,李卫国. 铝/铜蓝-红激光复合焊接头组织及性能. 焊接学报. 2024(03): 54-60+131-132 .
![]() | |
3. |
杜道忠,张超,周宇浩. 激光功率对铝/铜激光熔钎焊接头组织及性能的影响. 机械工程材料. 2024(05): 26-32 .
![]() | |
4. |
王佳杰,宋晓国,武鹏博,胡佩佩,滕彬,黄瑞生,于久灏. 铝/钛异种金属激光/激光-CMT复合熔钎焊工艺及其组织与力学性能. 焊接学报. 2023(02): 54-60+132 .
![]() | |
5. |
孙茜,王佳乐,周兴汶,王晓南. 镍/铜箔回流焊与激光钎焊界面显微组织与性能. 焊接学报. 2023(12): 35-40+139 .
![]() | |
6. |
于江,潘俊林,苗惺林,张洪涛,高建国,苏昭方. 铝/铜异种金属电阻热辅助超声波缝焊工艺特性. 焊接学报. 2022(07): 76-81+117-118 .
![]() |