Citation: | DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003 |
白易立, 王东坡, 邓彩艳, 等. 超声冲击强度对焊接接头疲劳寿命的影响[J]. 焊接学报, 2019, 40(12): 149 − 153.
Bai Yili, Wang Dongpo, Deng Caiyan, et al. Effect of ultrasonic impact strength on fatigue life of welded joint[J]. Transactions of the China Welding Institution, 2019, 40(12): 149 − 153.
|
邓彩艳, 牛亚如, 龚宝明, 等. 承载超声冲击下焊接接头疲劳性能的改善[J]. 焊接学报, 2017, 38(7): 72 − 76.
Deng Caiyan, Niu Yaru, Gong Baoming, et al. Improvement of fatigue properties of welded joints under ultrasonic impact loading[J]. Transactions of the China Welding Institution, 2017, 38(7): 72 − 76.
|
Shibanuma K, Ueda K, Ito H, et al. Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth[J]. Materials & Design, 2018, 139: 269 − 282.
|
Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48(1): 97 − 103. doi: 10.1115/1.3157599
|
Brückner-Foit A, Huang X. Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading[J]. International Journal of Fatigue, 2006, 28(9): 963 − 971. doi: 10.1016/j.ijfatigue.2005.08.011
|
Jezernik N, Kramberger J, Lassen T, et al. Numerical modelling of fatigue crack initiation and growth of martensitic steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(11): 714 − 723.
|
Mlikota M, Schmauder S, BožićŽ. Calculation of the Wöhler (SN) curve using a two-scale model[J]. International Journal of Fatigue, 2018, 114: 289 − 297. doi: 10.1016/j.ijfatigue.2018.03.018
|
Mlikota M, Staib S, Schmauder S, et al. Numerical deter- mination of Paris law constants for carbon steel using a two-scale model[C]//Journal of Physics: Conference Series. IOP Publishing, 2017, 843(1): 012042.
|
殷良伟. Ti_2AlNb焊接接头微区高温本构关系及疲劳裂纹萌生模型研究[D]. 南京: 南京航空航天大学, 2018.
Yin Liangwei. Research on constitutive relationship and fatigue crack initiation of Ti2AlNb alloy welded joints at elevated temperature[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|
刘亚波. 45钢疲劳裂纹萌生与扩展的数值模拟[D]. 秦皇岛: 燕山大学, 2014.
Liu Yabo. Numerical simulation of metal component’s fatigue crack initiation and propagation[D]. Qin Huangdao: Yanshan University, 2000.
|
陈小进. TC4-DT钛合金电子束焊接接头裂纹萌生数值模拟及试验研究[D]. 南京: 南京航空航天大学, 2017.
Chen Xiaojin. Simulation and in-stiu test of TC4-DT alloy electron beam welded joints fatigue micro-crack initiation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
|
Vinogradov A, Hashimoto S, Miura S. Crack initiation and propagation in〈110〉oriented copper single crystals under cyclic deformation[J]. Acta Metall. Mater, 1995, 43: 675 − 680. doi: 10.1016/0956-7151(94)00270-R
|
Newman Jr J C, Phillips E P, Swain M H. Fatigue-life prediction methodology using small-crack theory[J]. International Journal of fatigue, 1999, 21(2): 109 − 119. doi: 10.1016/S0142-1123(98)00058-9
|
[1] | MA Jingping, CAO Rui, ZHOU Xin. Development on improving fatigue life of high strength steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 115-128. DOI: 10.12073/j.hjxb.20230711001 |
[2] | WEI Liang, ZHANG Lele, WANG Peng. Numerical simulation on welding process of high-speed train's frame structure based on double elliptical cylinder Gaussian distribution heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 95-100. |
[3] | LI Xiaoyu, WANG Xiaopeng, LEI Zheng, YANG Haifeng. Investigation on softening of welded joint of side walls of high speed train of 6N01 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 95-98. |
[4] | LÜ Xiaochun, LEI Zhen, ZHANG Jian, ZHANG Lihua. Study on the softening of 6005A-T6 aluminum alloy welding joints for high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 25-29. |
[5] | LU Hao, XING Liwei, CHEN Dajun. Research on A-MAG welding of weathering resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 105-108. |
[6] | WANG Ping, WANG Qiang, LIU Xuesong, FANG Hongyuan. Welding sequence optimization for high-speed rail floor based on FEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 45-48. |
[7] | WANG Xuyou, LEI Zhen, ZHANG Jian, WANG Yanjin. Laser-tandem MIG hybrid welding for 6005A-T6 aluminum alloy profile of high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 9-12. |
[8] | GOU Guoqing, HUANG Nan, CHEN Hui, LI Da, MENG Lichun. Analysis on corrosion behavior of welded joint of A7N01ST5 aluminum alloy for high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 17-20. |
[9] | LU Hao, MA Ziqi, LIU Xuesong, FANG Hongyuan. Ultrasonic residual stress measurement of 300 km/h high-speed train body[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 29-32. |
[10] | LU Hao, LIU Xuesong, MENG Lichun, MA Ziqi, FANG Hongyuan. Residual stress evaluation of high-speed train body structure by ultrasonic method and verification[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 81-83. |