Citation: | ZHANG Xinbao, WU Kaiming, KE Rui, HU Chengyang, Amir A . Shirzadil, Serhii Yershov, HUANG Riqing. Zone characteristics of microstructure and mechanical properties of welded joints of dual phase stainless steel with 12%Cr[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 22-31. DOI: 10.12073/j.hjxb.20220328002 |
Bonagani S K, Bathula V, Kain V. Influence of tempering treatment on microstructure and pitting corrosion of 13 wt. % Cr martensitic stainless steel[J]. Corrosion Science, 2018, 131: 340 − 354. doi: 10.1016/j.corsci.2017.12.012
|
Van Warmelo M, Nolan D, Norrish J. Mitigation of sensitisation effects in unstabilised 12%Cr ferritic stainless steel welds[J]. Materials Science & Engineering: A, 2007, 464(1-2): 157 − 169.
|
Kondo K, Ueda M, Ogawa K, et al. Alloy design of super 13 Cr martensitic stainless steel (development of super 13 Cr martensitic stainless steel for line pipe-1)[C]//Supermartensitic Stainless Steels'99, 1999: 11 − 18.
|
Wang L, Song C, Sun F, et al. Microstructure and mechanical properties of 12 wt.% Cr ferritic stainless steel with Ti and Nb dual stabilization[J]. Materials & Design, 2009, 30(1): 49 − 56.
|
焦帅杰, 王国佛, 贾玉力, 等. 超级马氏体不锈钢焊丝 MAG 焊熔敷金属冲击性能优化[J]. 焊接学报, 2022, 43(3): 93 − 100. doi: 10.12073/j.hjxb.20210920002
Jiao Shuaijie, Wang Guofu, Jia Yuli, et al. Impact performance optimization of supermartensitic stainless steel welding wire deposited metal by MAG welding[J]. Transactions of the China Welding Institution, 2022, 43(3): 93 − 100. doi: 10.12073/j.hjxb.20210920002
|
Kim J K, Lee B J, Lee B H, et al. Intergranular segregation of Cr in Ti-stabilized low-Cr ferritic stainless steel[J]. Scripta Materialia, 2009, 61(12): 1133 − 1136. doi: 10.1016/j.scriptamat.2009.08.045
|
Cortie M B. History and development of ferritic stainless steels[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1993, 93(7): 165 − 176.
|
Taban E, Kaluc E, Dhooge A. Hybrid (plasma + gas tungsten arc) weldability of modified 12%Cr ferritic stainless steel[J]. Materials & Design, 2009, 30(10): 4236 − 4242.
|
Tavassoli A A F, Diegele E, Lindau R, et al. Current status and recent research achievements in ferritic/martensitic steels[J]. Journal of Nuclear Materials, 2014, 455(1-3): 269 − 276. doi: 10.1016/j.jnucmat.2014.06.017
|
Allen T R, Tan L, Gan J, et al. Microstructural development in advanced ferritic-martensitic steel HCM12A[J]. Journal of Nuclear Materials, 2006, 351(1-3): 174 − 186. doi: 10.1016/j.jnucmat.2006.02.014
|
Sam S, Das C R, Ramasubbu V, et al. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel[J]. Journal of Nuclear Materials, 2014, 455(1-3): 343 − 348. doi: 10.1016/j.jnucmat.2014.07.008
|
Marshall A W, Farrar J C M. Welding of ferritic and martensitic 11-14% Cr steels[J]. Welding in the World, 2001, 45(5-6): 32 − 55.
|
Ball A, Chauhan Y, Schaffer G B. Microstructure, phase equilibria, and transformations in corrosion resistant dual phase steel designated 3CR12[J]. Materials Science and Technology, 1987, 3(3): 189 − 196. doi: 10.1179/mst.1987.3.3.189
|
Ghassemi-Armaki H, Maaß R, Bhat S P, et al. Deformation response of ferrite and martensite in a dual-phase steel[J]. Acta Materialia, 2014, 62: 197 − 211. doi: 10.1016/j.actamat.2013.10.001
|
Sarwar M, Priestner R. Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel[J]. Journal of Materials Science, 1996, 31(8): 2091 − 2095. doi: 10.1007/BF00356631
|
Kalashami A G, Kermanpur A, Najafizadeh A, et al. Development of a high strength and ductile Nb-bearing dual phase steel by cold-rolling and intercritical annealing of the ferrite-martensite microstructures[J]. Materials Science & Engineering: A, 2016, 658: 355 − 366.
|
Zhao Y, Hu Y, Dong J, et al. The effect of welding materials on 1Cr18Ni9Ti and 2Cr13 steel welded joints electrochemical properties[J]. China Welding, 2022, 31(3): 42 − 47.
|
Nikkhah S, Mirzadeh H, Zmani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing[J]. Materials Chemistry and Physics, 2019, 230: 1 − 8. doi: 10.1016/j.matchemphys.2019.03.053
|
Xia M, Biro E, Tlan Z, et al. Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels[J]. ISIJ International, 2008, 48(6): 809 − 814. doi: 10.2355/isijinternational.48.809
|
Taban E, Deleu E, Dhooge A, et al. Laser welding of modified 12% Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties[J]. Materials & Design, 2009, 30(4): 1193 − 1200.
|
Farabi N, Chen D L, Zhou Y. Tensile properties and work hardening behavior of laser-welded dual-phase steel joints[J]. Journal of Materials Engineering and Performance, 2012, 21(2): 222 − 230. doi: 10.1007/s11665-011-9865-8
|
Pouranvari M, Marashi S P H. Key factors influencing mechanical performance of dual phase steel resistance spot welds[J]. Science and Technology of Welding And Joining, 2010, 15(2): 149 − 155. doi: 10.1179/136217109X12590746472535
|
Farabi N, Chen D L, Zhou Y. Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints[J]. Journal of Alloys and Compounds, 2011, 509(3): 982 − 989. doi: 10.1016/j.jallcom.2010.08.158
|
Deleu E, Dhooge A, Taban E, et al. Possibilities and limitations to improve the weldability of low carbon 12Cr ferritic stainless steel for expanded industrial applications[J]. Welding in the World, 2009, 53(9): 198 − 208.
|
黄友阳. 高频焊管金属流线的形成形态与分析[J]. 钢管, 2000, 29(6): 31 − 36. doi: 10.3969/j.issn.1001-2311.2000.06.008
Huang Youyang. Analysis of formation and morphology of HF weld tube metal flow line[J]. Steel Pipe, 2000, 29(6): 31 − 36. doi: 10.3969/j.issn.1001-2311.2000.06.008
|
唐文珅, 杨新岐, 李胜利, 等. 铁素体不锈钢搅拌摩擦焊工艺及缺陷形成机理[J]. 焊接学报, 2019, 40(6): 87 − 93,111. doi: 10.12073/j.hjxb.2019400160
Tang Wenkun, Yang Xinqi, Li Shengli, et al. Investigation on friction stir welding process of ferritic stainless steel and mechanism of defect formation[J]. Transactions of the China Welding Institution, 2019, 40(6): 87 − 93,111. doi: 10.12073/j.hjxb.2019400160
|
[1] | YIN Yuhuan, ZENG Caiyou, GAO Han, ZHANG Tiemin, QI Bojin, CONG Baoqiang. Effect of heat treatment on microstructure evolution and mechanical properties of 2219 aluminum alloy joint as fabricated by double-pulsed TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 42-49. DOI: 10.12073/j.hjxb.20211102003 |
[2] | LI Ju, ZHANG Tiancang, GUO Delun. Influence of heat treatment on microstructure and mechanical properties of TC17(α+β)/TC17(β) linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 97-100,120. DOI: 10.12073/j.hjxb.2018390131 |
[3] | XU Zhongfeng, LU Hao, YU Chun, YANG Yang. Microstructure and mechanical properties of 2219 aluminum alloy refilling friction stir welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 73-76. |
[4] | YAN Keng, SHI Zhiqiang, WANG Xiling. Influence of heat treatment on microstructure and mechanical properties of spray formed 7xxx series aluminum alloy TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 33-36,40. |
[5] | ZHU Hai, ZHENG Haiyang, GUO Yarding. Effects of heat treatment technology on mechanical properties of friction welding drill rod[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 93-96. |
[6] | MA Tiejun, YANG Siqian, ZHANG Yong, LI Wenya. Mechanical properties and microstructure features of linear friction welded TC4 titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 17-20. |
[7] | YAO Wei, GONG Shui-li, CHEN Li. Microstructure and mechanical properties of laser welded joint of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 69-72,76. |
[8] | YAN Keng, CAO Liang, CHEN Hua-bin. Effect of tool tilt angle on formation and mechanical property of FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 35-38. |
[9] | Sun Daqian, Zhou Zhenfeng, Ren Zhenan. Microstructure and Mechanical Properties of Austempered Ductile Iron Welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 202-207. |
[10] | Shi Yaowu, Zhou Ningning, Zhang Xinping, Tang Wei, Lei Yongping. Microshear test and its evaluation to mechanical properties of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 235-240. |
1. |
朱新杰,李永涛,邓明晰,姚森,张洁. 焊缝散射条件下板中超声导波直线阵列多帧变秩成像检测. 焊接学报. 2025(01): 80-86 .
![]() |