Advanced Search
GU Shiwei, XU Liang, YANG Haifeng, ZHANG Hongjie, HAN Tao. Damage evolution model and numerical simulation of X70 pipeline steel of in-service welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 86-92, 100. DOI: 10.12073/j.hjxb.20220307001
Citation: GU Shiwei, XU Liang, YANG Haifeng, ZHANG Hongjie, HAN Tao. Damage evolution model and numerical simulation of X70 pipeline steel of in-service welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 86-92, 100. DOI: 10.12073/j.hjxb.20220307001

Damage evolution model and numerical simulation of X70 pipeline steel of in-service welding

More Information
  • Received Date: March 06, 2022
  • Available Online: July 20, 2022
  • In this paper, X70 pipeline steel was taken as the research object. High temperature tensile tests were carried out at different temperatures and strain rates. Damage model parameters such as the threshold strain, critical damage strain and critical damage were obtained, and damage evolution equations based on BONARO model was established. The damage evolution process of in-service welding was simulated and compared with the experimental results of in-service welding. The influence rules of medium pressure and wall thickness on the damage evolution behavior of in-service welding were studied. It was found that: during the in-service welding process, molten pool below the maximum damage value of the inner wall is located in the largest fusion deep behind the 1mm to 2 mm area, damage value in thickness direction decreases from the fusion line to the inner wall; decreasing inner medium pressure and increasing the wall thickness can reduce the damage at the bottom of molten pool, thus reduce the risk of burn through.
  • 刘永滨, 冯立德, 张季娜, 等. 天然气管道在役修补焊接过程中的数值模拟[J]. 焊接学报, 2019, 40(10): 111 − 115,120.

    Liu Yongbin, Feng Lide, Zhang Jina, et al. Numerical simulation on in-serve welding of natural gas pipeline[J]. Transactions of the China Welding Institution, 2019, 40(10): 111 − 115,120.
    黄志强, 汤海平, 丁雅萍, 等. 天然气管道在役焊接温度场数值模拟[J]. 焊接学报, 2018, 39(6): 29 − 34. doi: 10.12073/j.hjxb.2018390143

    Huang Zhiqiang, Tang Haiping, Ding Yaping, et al. Numerical simulation for in-service welding temperature field of gas pipeline[J]. Transactions of the China Welding Institution, 2018, 39(6): 29 − 34. doi: 10.12073/j.hjxb.2018390143
    Wu Q, Han T, Wang Y, et al. In-situ observation of high-temperature failure behavior of pipeline steel and investigation on burn-through mechanism during in-service welding[J]. Engineering Failure Analysis, 2019, 109(9): 104236.
    API 1104. Welding of pipelines and related facilities, appendix B: in service welding[S]. American petroleum institute, 2013.
    Cisilino A P, Chapetti M D, Ozegui J L, et al. Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines[J]. International Journal of Pressure Vessels and Piping, 2002(79): 67 − 76.
    Matthew A B, William A B, et al. The effect of hoop stress on the burn through susceptibility during in-service welding of thin-walled pipelines[C]. Canada: 2008 7th International Pipeline Conference, 2009.
    郭广飞. X70钢高压气管线在役焊接烧穿判据研究[D]. 青岛: 中国石油大学(华东), 2014.

    Guo Guangfei. Study on burn-through criterion of X70 high-pressure gas pipeline during in-service welding[D]. Qingdao: China university of petroleum(East China), 2014.
    Wu Qian, Han Tao, Wang Hongtao, et al. Burn-through prediction during in-service welding based on residual strength and high-temperature plastic failure criterion[J]. International Journal of Pressure Vessels and Piping, 2021, 189(9): 104280.
    Majnoun P, Ghavi M R, Vakili-Tahami F, et al. A new thermo-mechanical approach to predict "burn-through" during the in-service welding[J]. International Journal of Pressure Vessels and Piping, 2021, 194(3): 104558.
    Lemaitre J A. Continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1): 10783.
    Oyane M. Criteria of ductile fracture strain[J]. Jsme International Journal, 2008, 15(90): 1507 − 1513.
    Bonora N, Gentile D, Pirondi A, et al. Ductile damage evolution under triaxial state of stress: theory and experiments[J]. International Journal of Plasticity, 2005, 21(5): 981 − 1007. doi: 10.1016/j.ijplas.2004.06.003
    Pirondi A, Bonora N. Modeling ductile damage under fully reversed cycling[J]. Computational Materials Science, 2003, 26(2): 129 − 141.
    杨超众. 316LN钢热成形开裂预报与损伤规律研究[D]. 上海: 上海交通大学, 2014.

    Yang Chaozhong. Research on fracture and damage condition for 316LN steel during hot deformation[D]. Shanghai: Shanghai Jiao Tong University, 2014.
    Bonora N, Ruggiero A, Esposito L, et al. CDM modeling of ductile failure in ferritic steels: Assessment of the geometry transferability of model parameters[J]. International Journal of Plasticity, 2006, 22(11): 2015 − 2047. doi: 10.1016/j.ijplas.2006.03.013
    Lemaitre J, Desmorat R. Engineering damage mechanics : ductile, creep, fatigue and brittle failures[M]. Germany: Springer, 2005.
    Yang H, Li Z H, Zhang Z L, et al. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2006, 7(8): 1453 − 1460.
    Mirzadeh H, Najafizadeh A. Flow stress prediction at hot working conditions[J]. Materials Science & Engineering A, 2010, 527(4-5): 1160 − 1164.
    Goldak J, Bibby M, Moore J, et al. Computer modeling of heat flow in welds[J]. Metallurgical Ttansactions B, 1986(17B): 587 − 600.
    Qian W, Yong W, Tao H, et al. Influence of internal corrosive defect on the burn-through of in-service welding on pipelines[J]. Journal of Pressure Vessel Technology, 2018, 140(4): 041701. doi: 10.1115/1.4039698
    Qian W, Yong W, Tao H, et al. Study on the failure mechanism of burn-through during in-service welding on gas pipelines[J]. Journal of Pressure Vessel Technology, 2019, 141(2): 024501. doi: 10.1115/1.4042461
  • Related Articles

    [1]HUANG Huizhen, ZHAO Yanan, PENG Ruyi, DUAN Yuande. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149
    [2]JIN Fengyang, LI Xiaoyan, YAO Peng. A study on Cu-Sn soldering and shear behavior of solder joints with micro interconnection[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 58-63. DOI: 10.12073/j.hjxb.2019400042
    [3]QIU Xiliang, WANG Qian, LIN Tiesong, HE Peng, LU Fengjiao. Effect of Al18B4O33 whiskers on microstructure evolution of intermetallic compound layer and shear behavior of soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 35-38.
    [4]YANG Minxuan, LIN Tiesong, HAN Chun, HE Peng, WEI Hongmei. Effect of Cu+B composite fillers proportion on Al2O3/TC4 alloy joint microstructure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 33-36,40.
    [5]QI Kai, WANG Fengjiang, LAI Zhongmin. Inhibition growth of intermetallic compounds at solder/Cu of by addition of Zn into Sn-3.5Ag[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 57-60.
    [6]ZHANG Wanhong, LI Ning. Brazing process of alumina ceramic to steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 97-100.
    [7]ZHAI Qiuya, YANG Jinshan, XU Jinfeng, GUO Xuefeng. Study on rapid solidification welding techniques of quenched Cu-Sn alloy foils[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 53-56.
    [8]ZHAI Qiuya, YANG Jinshan, XU Feng, XU Jinfeng. Microstructural characteristic of rapid solidification welding joint of melt-spun Cu-Sn peritectic alloy foils[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 49-52,56.
    [9]WANG Juan, LI Ya-jiang, MA Hai-jun, LIU Peng. Microstructure in diffusion bonded TiC-Al2O3 W18Cr4V joint with Ti Cu Ti composite interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 9-12.
    [10]Chen Zheng, Li Zhizhang, Zhao Qizhang, Lou Honqing. Bonding Al2O3 to Cu with Ti Foil[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (4): 200-205.
  • Cited by

    Periodical cited type(4)

    1. 邓智超,颜润明,杨蕙同,陈浩林,赖锦祥,雷亮. 基于改进残差网络的多视图焊点缺陷检测. 焊接学报. 2022(03): 56-62+116 . 本站查看
    2. 何晓娅,袁彬,雷经发,吴路路,董方方. 区域产业需求导向的创新型人才培养模式研究——以安徽省机器人专业为例. 教育教学论坛. 2022(36): 6-10 .
    3. 柯希林,王中任,刘海生,王小刚. 基于单目主被动视觉结合的焊接偏差检测方法. 激光与红外. 2021(11): 1519-1525 .
    4. 张天一,朱志明,朱传辉. 基于视觉与重力融合传感的焊枪位姿反馈控制. 焊接学报. 2021(11): 1-7+97 . 本站查看

    Other cited types(0)

Catalog

    Article views (268) PDF downloads (35) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return