Citation: | GU Shiwei, XU Liang, YANG Haifeng, ZHANG Hongjie, HAN Tao. Damage evolution model and numerical simulation of X70 pipeline steel of in-service welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 86-92, 100. DOI: 10.12073/j.hjxb.20220307001 |
刘永滨, 冯立德, 张季娜, 等. 天然气管道在役修补焊接过程中的数值模拟[J]. 焊接学报, 2019, 40(10): 111 − 115,120.
Liu Yongbin, Feng Lide, Zhang Jina, et al. Numerical simulation on in-serve welding of natural gas pipeline[J]. Transactions of the China Welding Institution, 2019, 40(10): 111 − 115,120.
|
黄志强, 汤海平, 丁雅萍, 等. 天然气管道在役焊接温度场数值模拟[J]. 焊接学报, 2018, 39(6): 29 − 34. doi: 10.12073/j.hjxb.2018390143
Huang Zhiqiang, Tang Haiping, Ding Yaping, et al. Numerical simulation for in-service welding temperature field of gas pipeline[J]. Transactions of the China Welding Institution, 2018, 39(6): 29 − 34. doi: 10.12073/j.hjxb.2018390143
|
Wu Q, Han T, Wang Y, et al. In-situ observation of high-temperature failure behavior of pipeline steel and investigation on burn-through mechanism during in-service welding[J]. Engineering Failure Analysis, 2019, 109(9): 104236.
|
API 1104. Welding of pipelines and related facilities, appendix B: in service welding[S]. American petroleum institute, 2013.
|
Cisilino A P, Chapetti M D, Ozegui J L, et al. Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines[J]. International Journal of Pressure Vessels and Piping, 2002(79): 67 − 76.
|
Matthew A B, William A B, et al. The effect of hoop stress on the burn through susceptibility during in-service welding of thin-walled pipelines[C]. Canada: 2008 7th International Pipeline Conference, 2009.
|
郭广飞. X70钢高压气管线在役焊接烧穿判据研究[D]. 青岛: 中国石油大学(华东), 2014.
Guo Guangfei. Study on burn-through criterion of X70 high-pressure gas pipeline during in-service welding[D]. Qingdao: China university of petroleum(East China), 2014.
|
Wu Qian, Han Tao, Wang Hongtao, et al. Burn-through prediction during in-service welding based on residual strength and high-temperature plastic failure criterion[J]. International Journal of Pressure Vessels and Piping, 2021, 189(9): 104280.
|
Majnoun P, Ghavi M R, Vakili-Tahami F, et al. A new thermo-mechanical approach to predict "burn-through" during the in-service welding[J]. International Journal of Pressure Vessels and Piping, 2021, 194(3): 104558.
|
Lemaitre J A. Continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1): 10783.
|
Oyane M. Criteria of ductile fracture strain[J]. Jsme International Journal, 2008, 15(90): 1507 − 1513.
|
Bonora N, Gentile D, Pirondi A, et al. Ductile damage evolution under triaxial state of stress: theory and experiments[J]. International Journal of Plasticity, 2005, 21(5): 981 − 1007. doi: 10.1016/j.ijplas.2004.06.003
|
Pirondi A, Bonora N. Modeling ductile damage under fully reversed cycling[J]. Computational Materials Science, 2003, 26(2): 129 − 141.
|
杨超众. 316LN钢热成形开裂预报与损伤规律研究[D]. 上海: 上海交通大学, 2014.
Yang Chaozhong. Research on fracture and damage condition for 316LN steel during hot deformation[D]. Shanghai: Shanghai Jiao Tong University, 2014.
|
Bonora N, Ruggiero A, Esposito L, et al. CDM modeling of ductile failure in ferritic steels: Assessment of the geometry transferability of model parameters[J]. International Journal of Plasticity, 2006, 22(11): 2015 − 2047. doi: 10.1016/j.ijplas.2006.03.013
|
Lemaitre J, Desmorat R. Engineering damage mechanics : ductile, creep, fatigue and brittle failures[M]. Germany: Springer, 2005.
|
Yang H, Li Z H, Zhang Z L, et al. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2006, 7(8): 1453 − 1460.
|
Mirzadeh H, Najafizadeh A. Flow stress prediction at hot working conditions[J]. Materials Science & Engineering A, 2010, 527(4-5): 1160 − 1164.
|
Goldak J, Bibby M, Moore J, et al. Computer modeling of heat flow in welds[J]. Metallurgical Ttansactions B, 1986(17B): 587 − 600.
|
Qian W, Yong W, Tao H, et al. Influence of internal corrosive defect on the burn-through of in-service welding on pipelines[J]. Journal of Pressure Vessel Technology, 2018, 140(4): 041701. doi: 10.1115/1.4039698
|
Qian W, Yong W, Tao H, et al. Study on the failure mechanism of burn-through during in-service welding on gas pipelines[J]. Journal of Pressure Vessel Technology, 2019, 141(2): 024501. doi: 10.1115/1.4042461
|
[1] | HUANG Huizhen, ZHAO Yanan, PENG Ruyi, DUAN Yuande. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149 |
[2] | JIN Fengyang, LI Xiaoyan, YAO Peng. A study on Cu-Sn soldering and shear behavior of solder joints with micro interconnection[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 58-63. DOI: 10.12073/j.hjxb.2019400042 |
[3] | QIU Xiliang, WANG Qian, LIN Tiesong, HE Peng, LU Fengjiao. Effect of Al18B4O33 whiskers on microstructure evolution of intermetallic compound layer and shear behavior of soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 35-38. |
[4] | YANG Minxuan, LIN Tiesong, HAN Chun, HE Peng, WEI Hongmei. Effect of Cu+B composite fillers proportion on Al2O3/TC4 alloy joint microstructure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 33-36,40. |
[5] | QI Kai, WANG Fengjiang, LAI Zhongmin. Inhibition growth of intermetallic compounds at solder/Cu of by addition of Zn into Sn-3.5Ag[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 57-60. |
[6] | ZHANG Wanhong, LI Ning. Brazing process of alumina ceramic to steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 97-100. |
[7] | ZHAI Qiuya, YANG Jinshan, XU Jinfeng, GUO Xuefeng. Study on rapid solidification welding techniques of quenched Cu-Sn alloy foils[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 53-56. |
[8] | ZHAI Qiuya, YANG Jinshan, XU Feng, XU Jinfeng. Microstructural characteristic of rapid solidification welding joint of melt-spun Cu-Sn peritectic alloy foils[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 49-52,56. |
[9] | WANG Juan, LI Ya-jiang, MA Hai-jun, LIU Peng. Microstructure in diffusion bonded TiC-Al2O3 W18Cr4V joint with Ti Cu Ti composite interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 9-12. |
[10] | Chen Zheng, Li Zhizhang, Zhao Qizhang, Lou Honqing. Bonding Al2O3 to Cu with Ti Foil[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (4): 200-205. |
1. |
邓智超,颜润明,杨蕙同,陈浩林,赖锦祥,雷亮. 基于改进残差网络的多视图焊点缺陷检测. 焊接学报. 2022(03): 56-62+116 .
![]() | |
2. |
何晓娅,袁彬,雷经发,吴路路,董方方. 区域产业需求导向的创新型人才培养模式研究——以安徽省机器人专业为例. 教育教学论坛. 2022(36): 6-10 .
![]() | |
3. |
柯希林,王中任,刘海生,王小刚. 基于单目主被动视觉结合的焊接偏差检测方法. 激光与红外. 2021(11): 1519-1525 .
![]() | |
4. |
张天一,朱志明,朱传辉. 基于视觉与重力融合传感的焊枪位姿反馈控制. 焊接学报. 2021(11): 1-7+97 .
![]() |