Advanced Search
Liqun LI, Ping HE, Jianfeng GONG. Simulation analysis of droplet action on keyhole during laser-MIG composite welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 1-7. DOI: 10.12073/j.hjxb.20220304002
Citation: Liqun LI, Ping HE, Jianfeng GONG. Simulation analysis of droplet action on keyhole during laser-MIG composite welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 1-7. DOI: 10.12073/j.hjxb.20220304002

Simulation analysis of droplet action on keyhole during laser-MIG composite welding of aluminum alloy

More Information
  • Received Date: March 03, 2022
  • Available Online: July 07, 2022
  • In this paper, a coupled thermal flow model for 5A06 aluminum alloy laser-MIG hybrid welding is developed, which takes account of the driving forces such as recoil pressure, surface tension and droplet transfer behavior. The flow in the molten pool and the stability of the keyhole have an important impact on the welding performance, therefore, the influence of droplet and keyhole on the stability of molten pool is discussed systematically through numerical simulation with different droplet location. It is found that the impact of the melt drop on the keyhole is greater, the average velocity and wave frequency of the keyhole wall increase, and the keyhole bridge is more likely to be closed due to the periodic droplet transition, when the melting drop is close to the laser center. In addition, the location of melting drop will also affect the ratio of depth to width of the keyhole and thus affect the Fresnel absorption of laser energy.
  • 钟宝华. 激光焊接技术应用现状及发展趋势[J]. 现代焊接, 2008(9): 1 − 5.

    Zhong Baohua. Present situation and development trend of the application of laser welding technology[J]. Modern Welding Technology, 2008(9): 1 − 5.
    Steen W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11): 5636 − 5641. doi: 10.1063/1.327560
    Stute U, Kling R, Hermsdorf J. Interaction between electrical arc and Nd: YAG laser radiation[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1): 197 − 200. doi: 10.1016/j.cirp.2007.05.048
    刘永翔. 厚板低碳钢窄间隙激光-MIG复合焊接工艺研究[J]. 应用激光, 2016(3): 326 − 330. doi: 10.14128/j.cnki.al.20163603.326

    Liu Yongxiang. Study of laser-MIG hybrid welding of thick mild steel plates with a narrow gap[J]. Applied Laser, 2016(3): 326 − 330. doi: 10.14128/j.cnki.al.20163603.326
    徐剑侠. 激光-MIG复合焊接热过程和熔池流场的数值分析[D]. 济南: 山东大学, 2017.

    Xu Jianxia. Numerical simulation of thermal process and fluid flow in Laser-MIG hybrid weld pool[D]. Jinan: Shandong University, 2017.
    胥国祥, 武传松, 秦国梁, 等. 激光 + GMAW复合热源焊焊缝成形的数值模拟-Ⅱ. 组合式体积热源的作用模型[J]. 金属学报, 2008, 44(6): 641 − 646. doi: 10.3321/j.issn:0412-1961.2008.06.001

    Xu Guoxiang, Wu Chuansong, Qin Guoliang, et al. Numerical simulation of weld formation in laser + GMAW hybrid welding-Ⅱ. Combined volumetric distribution mode of hybrid welding heat source[J]. Acta Metallurgica Sinica, 2008, 44(6): 641 − 646. doi: 10.3321/j.issn:0412-1961.2008.06.001
    Chen X, Yu G, He X, et al. Effect of droplet impact on molten pool dynamics in hybrid laser-MIG welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 209 − 222. doi: 10.1007/s00170-017-1509-1
    Xu G, Li P, Li L, et al. Influence of arc power on keyhole-induced porosity in laser + GMAW hybrid welding of aluminum alloy: Numerical and experimental studies[J]. Materials, 2019, 12(8): 1328. doi: 10.3390/ma12081328
    Ting Y Y, Zhan X H, Gao Q Y, et al. Influence of laser power on molten pool flow field of laser-MIG hybrid welded Invar alloy[J]. Optics and Laser Technology, 2021, 133: 106539.
    Faraji A H, Goodarzi M, Seyedein S H, et al. Numerical modeling of heat transfer and fluid flow in hybrid laser–TIG welding of aluminum alloy AA6082[J]. The International Journal of Advanced Manufacturing Technology, 2014, 77(9-12): 2067 − 2082.
    李志宁, 都东, 常保华, 等. 激光-等离子弧复合焊接熔池流动和传热的数值分析[J]. 焊接学报, 2007, 28(7): 37 − 40.

    Li Zhining, Du Dong, Chang Baohua, et al. Numerical simulation on flow and heat transfer in weld pool of laser-plasma hybrid welding[J]. Transactions of the China Welding Institution, 2007, 28(7): 37 − 40.
    吴向阳, 徐剑侠, 高学松, 等. 激光-MIG复合焊接热过程与熔池流场的数值分析[J]. 中国激光, 2019, 46(9): 91 − 102.

    Wu Xiangyang, Xu Jianxia, Gao Xuesong, et al. Numerical simulation of thermal process and fluid flow field in laser-MIG hybrid weld pools[J]. Chinese Journal of Lasers, 2019, 46(9): 91 − 102.
    胥国祥, 张卫卫, 刘朋, 等. 激光 + GMAW复合热源焊熔池流体流动的数值分析[J]. 金属学报, 2015, 51(6): 713 − 723.

    Xu Guoxiang, Zhang Weiwei, Liu Peng, et al. Numerical analysis of fliud flow in laser + GMAW hybrid welding[J]. Acta Metallurgica Sinica, 2015, 51(6): 713 − 723.
    Siewert E, Schein J, Forster G. Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon–iron[J]. Journal of Physics D:Applied Physics, 2013, 46(22): 224008. doi: 10.1088/0022-3727/46/22/224008
    高学松. 搭接接头摆动激光-GMAW复合焊接传热过程与熔池流场的数值分析[D]. 济南: 山东大学, 2019.

    Gao Xuesong. Numerical analysis of thermal process and fluid flow in weld pool during oscillating laser-GMAW hybrid welding of lap joints[D]. Jinan: Shandong University, 2019.
    张聃. Invar合金激光-MIG复合焊接过程多相耦合流场行为研究[D]. 南京: 南京航空航天大学, 2018.

    Zhang Dan. Study on multiphase coupled flow field behavior during laser-MIG hybrid welding of invar alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    张皓庭. 激光 + GMAW复合热源焊接熔池与小孔动态行为的数值模拟[D]. 济南: 山东大学, 2015.

    Zhang Haoting. Numerical analysis of weld pool and keyhole dynamics in laser + GMAW hybrid welding[D]. Jinan: Shandong University, 2015.
    Cho J H, Na S J. Three-dimensional analysis of molten pool in GMA-laser hybrid welding[J]. Welding Journal, 2009, 88(4): 35 − 44.
    赵琳, 塚本进, 荒金吾郎, 等. 激光-电弧复合焊焊缝合金元素分布的研究[J]. 中国激光, 2015, 42(4): 210 − 217.

    Zhao Lin, Zhong Benjin, Huang Jinwulang, et al. Distribution of wire feeding elements in laser-arc hybrid welds[J]. Chinese Journal of Lasers, 2015, 42(4): 210 − 217.
    Ning J, Zhang L J, Na S J, et al. Numerical study of the effect of laser-arc distance on laser energy coupling in pulsed Nd: YAG laser/TIG hybrid welding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 1129 − 1143. doi: 10.1007/s00170-016-9812-9
  • Related Articles

    [1]CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001
    [2]XIAO Jun, GE Xinyu, GAI Shengnan, CHEN Shujun, SHENG Weixing, CHEN Shaojun. Regulation of bead formation in GMAW based on oscillating-laser scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 7-12. DOI: 10.12073/j.hjxb.20230423001
    [3]LU Yiting, LU Wei, WANG Bin, MA Xuyi, CHEN Wei. Effect of laser wobble on energy distribution and weld forming of Ti60 alloy laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 95-102. DOI: 10.12073/j.hjxb.20220728001
    [4]PANG Bowen, CUI Jiangmei, ZHOU Naixun, KE Wenchao, CHEN Long, AO Sansan, ZENG Zhi. Effect of power distribution on dynamic behavior of molten pool during laser oscillating welding of 5A06 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 23-30. DOI: 10.12073/j.hjxb.20220404001
    [5]YANG Wen, GENG Shaoning, JIANG Ping, HAN Chu, GU Shiyuan. Process control of the porosity defects in high power oscillating laser welding of medium-thick aluminum alloy plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 26-33. DOI: 10.12073/j.hjxb.20210528001
    [6]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [7]LI Ying, FENG Xiaosong, ZHANG Dan, CUI Fan. High power fiber laser welding of lock butt joint of medium 0Cr15Ni5Cu4Nb steel plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 97-100.
    [8]YANG Xiaohong, SONG Yonglun, HU Kunping, XIA Yuan. Characteristic of energy distribution at anode and cathode on AC TIG welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 29-32.
    [9]WANG Wei, WANG XuYou, QI GuoLiang, LEI Zhen, LIN ShangYang, DU Bing. Welding characteristics of laser-low power pulse MIG hybrid welding aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 37-40,61.
    [10]SUN Hao, ZHANG Zhaodong, LIU Liming. Low power laser welding of magnesium alloy with activating flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 49-52.
  • Cited by

    Periodical cited type(2)

    1. 刘海,陈辉. Q345B/304异种钢激光填丝焊接工艺与性能研究. 激光技术. 2024(02): 229-234 .
    2. 于鸿宇,刘智慧,张承瑞,陈赓,高涛. 基于旁轴视觉的激光焊接系统加工定位方法. 焊接学报. 2024(09): 42-49+102 . 本站查看

    Other cited types(0)

Catalog

    Article views (332) PDF downloads (104) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return