Advanced Search
BAO Liangliang, LIU Fujian, XU Yanhong, ZHANG Xinming, OUYANG kai, HAN Tao. Investigation on microstructure and impact toughness of double-pass laser-arc hybrid welding heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 90-99. DOI: 10.12073/j.hjxb.20220303001
Citation: BAO Liangliang, LIU Fujian, XU Yanhong, ZHANG Xinming, OUYANG kai, HAN Tao. Investigation on microstructure and impact toughness of double-pass laser-arc hybrid welding heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 90-99. DOI: 10.12073/j.hjxb.20220303001

Investigation on microstructure and impact toughness of double-pass laser-arc hybrid welding heat affected zone

More Information
  • Received Date: March 02, 2022
  • Available Online: December 07, 2022
  • Homogeneous specimens of the double-pass laser-arc hybrid welding heat affected zone (HAZ) of low alloy high strength steels were prepared by welding simulation technology, the influence of second peak temperature on the microstructure and toughness of the simulated specimens was investigated. The results showed that the unaltered coarse grained HAZ (UACGHAZ) compose of coarse lath martensite (LM) with an average grain size between 84 − 98 μm. The supercritically reheated CGHAZ (SCRCGHAZ) is comprised of fine LM with an average grain size between 15.7 − 19.2 μm. The intercritically reheated CGHAZ (ICCGHAZ) compose of LM with blocky martensite-austenite constituents distributed along grain boundaries and subgrain boundaries. The subcritically reheated CGHAZ (SRCGHAZ) is comprised of LM with an average grain size between 79 − 88 μm. The instrumented impact test results showed that the ICCGHAZ specimens own the lowest resistance to crack initiation, and the ICCGHAZ and UACGHAZ had the poorest resistance to crack propagation.
  • Cao X, Wanjara P, Huang J, et al. Hybrid fiber laser–arc welding of thick section high strength low alloy steel[J]. Materials & Design, 2011, 32(6): 3399 − 3413.
    Kristensen J K. Thick plate CO2-laser based hybrid welding of structural steels[J]. Welding in the World, 2009, 53(1): 48 − 57.
    Bunaziv I, Akselsen O, Frostevarg J, et al. Laser-arc hybrid welding of thick HSLA steel[J]. Journal of Materials Processing Technology, 2018, 259: 75 − 87. doi: 10.1016/j.jmatprotec.2018.04.019
    Zhang S H, Shen Y F, Qiu H J. The technology and welding joint properties of hybrid laser-TIG welding on thick plate[J]. Optics Laser Technology, 2013, 48: 381 − 388. doi: 10.1016/j.optlastec.2012.11.014
    Bao Liangliang, Wang Yong, Han Tao. Study on microstructure-toughness relationship in heat affected zone of EQ70 steel by laser-arc hybrid welding[J]. Materials Characterization, 2020, 171: 110788.
    Li X, Fan Y, Ma X, et al. Influence of Martensite-Austenite constituents formed at different intercritical temperatures on toughness[J]. Materials & Design, 2015, 67: 457 − 463.
    Li X, Ma X, Subramanian S V, et al. Structure-property-fracture mechanism correlation in heat-affected zone of X100 ferrite-bainite pipeline steel[J]. Metallurgical & Materials Transactions E, 2015, 2(1): 1 − 11.
    Bao Liangliang, Wang Yong, Han Tan. Microstructure and mechanical characterization of high strength low alloy steel welded joint by hybrid laser arc welding[C]//2019 the 7th International Conference on Mechanical Engineering, Materials Science and Civil Engineering, IOP Conference Series: Materials Science and Engineering. 2020, 758 : 012045.
    鲍亮亮, 王勇, 张洪杰, 等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J]. 焊接学报, 2021, 42(3): 26 − 33. doi: 10.12073/j.hjxb.20201207002

    Bao Liangliang, Wang Yong, Zhang Hongjie, et al. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. Transactions of the China Welding Institution, 2021, 42(3): 26 − 33. doi: 10.12073/j.hjxb.20201207002
    Han Tao, Zhang Hongjie, Wu Qian, et al. Numerical simulation of 80 ℃ temperature field distribution of thick plate multi-pass welding with SYSWELD[J]. China Welding, 2018, 21(7): 20 − 25.
    王勇, 王引真, 张德勤. 材料冶金学与成型工艺[M]. 东营: 石油大学出版社, 2005.

    Wang Yong, Wang Yinzhen, Zhang Deqin. Materials metallurgy and processing[M]. Dongying: Petroleum University Press, 2005.
    Kim B C, Lee S, Kim N J, et al. Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds[J]. Metallurgical Transactions A, 1991, 22: 139 − 149.
    Hamada M. Control of strength and toughness at the heat affected zone[J]. Welding International, 2003, 17(4): 265 − 270. doi: 10.1533/wint.2003.3100
    滕彬, 李小宇, 雷振, 等. 低合金高强钢激光-电弧复合热源焊接冷裂纹敏感性分析[J]. 焊接学报, 2010, 31(11): 61 − 64.

    Teng Bin, Li Xiaoyu, Lei Zhen, et al. Analysis on cold crack sensitivity of low alloy high strength steel weld by laser-arc hybrid welding[J]. Transactions of the China welding institution, 2010, 31(11): 61 − 64.
    王振波, 何耀洋, 颜军, 等. 焊接钢榫卯连接装配式混凝土柱抗震性能分析[J]. 南京工业大学学报(自然科学版), 2022, 44(2): 187 − 197.

    Wang Zhenbo, He Yanyang, Yan Jun, et al. Seismic performance analysis of welded steel mortise and tenon joint assembled concrete columns[J]. Journal of Nanjing Tech University(Natural Science Edition), 2022, 44(2): 187 − 197.
    伏玮, 马韩韩, 孔令瑞, 等. 氢对不同回火脆态下2.25Cr-1Mo-0.25V钢母材及焊缝韧脆转变温度的影响[J]. 南京工业大学学报(自然科学版), 2021, 43(6): 755 − 765.

    Fu Wei, Ma Hanhan, Kong Lingrui, et al. Effects of hydrogen on ductile-brittle transition temperature of 2.25Cr-1Mo-0.25V steel base metal and weld metal under different temper embrittlement states[J]. Journal of Nanjing Tech University(Natural Science Edition, 2021, 43(6): 755 − 765.
    鲍亮亮, 潘春宇, 刘福建, 等. 低合金高强钢激光电弧复合焊热模拟热影响区组织与冲击韧性研究[J]. 焊接学报, 2022, 43(5): 90 − 97.

    Bao Liangliang, Pan Chunyu, Liu Fujian, et al. Research on the HAZ microstructures and toughness of the laser-arc hybrid welding of high strength low alloy steels[J]. Transactions of the China Welding Institution, 2022, 43(5): 90 − 97.
  • Related Articles

    [1]BAO Liangliang, PAN Chunyu, LIU Fujian, ZHANG Xinming, HAN Tao. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 90-97. DOI: 10.12073/j.hjxb.20210817001
    [2]SHEN Yu, WAN Xiangliang, LIU Yu, LI Guangqiang, WU Kaiming. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 55-62. DOI: 10.12073/j.hjxb.2019400209
    [3]CHAI Feng, YANG Cai-fu, ZHANG Yong-quan, SU Hang, XU Zhou. Coarse-grained heat affected zone microstructure and toughness of copper-bearing age-hardening steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 56-60.
    [4]LI Wei-wei, LIU Ya-xu, GAO Hui-lin, ZHAO Xin-wei, FENG Yaorong, JI Ling-kang. Analysis of toughness in HAZ for X80 pipeline steel welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 43-46.
    [5]LI Hong-wei, HE Chang-hong, PENG Yun, TIAN Zhi-ling, LIU Rong-pei, CHEN Yan-qing. High toughness submerged arc welding wire of ship steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 96-100.
    [6]XU Xue-li, XIN Xi-xian, SHI Kai, ZHOU Yong. Influence of welding thermal cycle on toughness and microstructure in grain-coarsening region of X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 69-72.
    [7]YIN Gui quan, CHA Xian zhu, LU Bai zhong. Granular bainite in microstructures after welding and its effects on impact toughness in STE355 steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 55-58.
    [8]Zhang Xianhui, Jiao Wei, Tan Changying. HAZ Structure, Toughness and Characteristics to Hydrogen-Induced Cracking(HIC) of Steel 20MnNiMo[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 9-12.
    [9]Yan Cheng, Chen Jianhong, Luo Yongchun. Microstructures and toughness of local brittle zone of HSLA steel multipass weld metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 21-25.
    [10]Yang Yongxing, He Huaixing. THE HELPFUL EFFECT OF ANGLE RESTRAINT ON WELDING HAZ TOUGHNESS IN 15MnMoVNREs STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (1): 36-42.
  • Cited by

    Periodical cited type(1)

    1. 鲍亮亮,徐艳红,张新明,欧阳凯. 一次峰值温度对激光电弧复合焊热模拟临界再热粗晶区组织与韧性的影响. 材料导报. 2023(S2): 383-387 .

    Other cited types(0)

Catalog

    Article views (335) PDF downloads (96) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return