Advanced Search
YANG Huanyu, XU Xinkun, BA Xianli, TAO Xingkong, LIU Liming. Process and mechanism of low power laser-double arc welding of titanium alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 12-19. DOI: 10.12073/j.hjxb.20211212001
Citation: YANG Huanyu, XU Xinkun, BA Xianli, TAO Xingkong, LIU Liming. Process and mechanism of low power laser-double arc welding of titanium alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 12-19. DOI: 10.12073/j.hjxb.20211212001

Process and mechanism of low power laser-double arc welding of titanium alloy plate

More Information
  • Received Date: December 11, 2021
  • Available Online: November 10, 2022
  • Single tungsten inert gas welding (STIG), double tungsten inert gas welding (DTIG), laser-single TIG arc hybrid welding (L-STIG) and laser-double TIG arc hybrid welding (L-DTIG) were used to weld TA2 titanium alloy butt joints with 6 mm thickness , and one-side welding with back formation were achieved. The results show that the arc energy of L-DTIG hybrid welding is more concentrated, and the welding speed can reach 680 mm/min. The heat input of L-DTIG hybrid welding is 605.5 J/mm, which is only 35.5% of DTIG and 59.0% of L-STIG. The grain size of L-DTIG weld zone is fine, and the microhardness can reach 229.5 HV. Tensile specimens fracture at the base material and the joint strength is better than that of the base material. After the addition of laser, the arc plasma central conductive zone of L-DTIG shrinks by 51.0% and 45.5% in the xOy and yOz planes, respectively, and the arc root shrinks by 75.0%. The measured arc pressure of the L-DTIG composite welding heat source on the workpiece was 3 465 Pa, which was 4.17 and 2.25 times higher than that of DTIG and L-STIG composite welding, respectively. The higher arc shrinkage ratio and arc pressure can significantly improve the welding efficiency and reduce the welding heat input.
  • 陈曦, 姜楠, 毕江, 等. 钛/铝激光熔钎焊接头原位TEM拉伸断裂行为[J]. 焊接学报, 2021, 42(11): 22 − 28, 98. doi: 10.12073/j.hjxb.20210420001

    Chen Xi, Jiang Nan, Bi Jiang, et al. In-situ TEM tensile fracture behavior of titanium/aluminum laser brazing joint[J]. Transactions of the China Welding Institution, 2021, 42(11): 22 − 28, 98. doi: 10.12073/j.hjxb.20210420001
    Tricarico L, Brandizzi M, Satriano A A. CO2 laser-MIG hybrid welding of titanium alloy[C]//AMPT 2009-Advances in Material Processing Technoligies. Kuala Lumpur, Malaysia, 2009.
    牟刚, 华学明, 徐小波, 等. 8 mm厚TC4钛合金TIG、MIG焊接工艺及性能对比研究[J]. 电焊机, 2020, 50(4): 70 − 74.

    Mou Gang, Hua Xueming, Xu Xiaobo, et al. Comparative study on welding process and performance of 8 mm thick TC4 titanium alloy TIG and MIG[J]. Electric Welding Machine, 2020, 50(4): 70 − 74.
    Chen Y, Zhang K, Xue H, et al. Study on laser welding of a Ti-22Al-25Nb alloy: microstructural evolution and high temperature brittle behavior[J]. Journal of Alloys & Compounds, 2016, 681: 175 − 185.
    Zhang M, Tang K, Zhang J, et al. Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 491 − 501. doi: 10.1007/s00170-018-1613-x
    牛小男, 崔丽, 王鹏, 等. 镍铝青铜过渡层对钛合金/不锈钢异种材料激光焊接头组织与力学性能的影响[J]. 焊接学报, 2022, 43(1): 42 − 47.

    Niu Xiaonan, Cui Li, Wang Peng, et al. Effect of nickel aluminum bronze transition layer on microstructure and mechanical properties of laser welded titanium alloy/stainless steel joint[J]. Transactions of the China Welding Institution, 2022, 43(1): 42 − 47.
    Tian D, Gao Z, Wang F, et al. The porosity formation mechanism in the laser-welded butt joint of 8 mm thickness Ti-6Al-4V alloy: Effect of welding speed on the metallurgical pore formation[J]. Modern Physics Letters B, 2020, 34(4): 566 − 578.
    黄瑞生, 杨义成, 蒋宝, 等. 超高功率激光-电弧复合焊接特性分析[J]. 焊接学报, 2019, 40(12): 73 − 77,96.

    Huang Ruisheng, Yang Yicheng, Jiang Bao, et al. Analysis of welding characteristics of ultra-high power laser-arc hybrid welding[J]. Transactions of the China Welding Institution, 2019, 40(12): 73 − 77,96.
    Zeng Huilin, Xu Yuanbin, Wang Changjiang, et al. Research on laser-arc hybrid welding technology for long-distance pipeline construction[J]. China Welding, 2018, 27(3): 53 − 58.
    Liu L, Li C, Shi J. Analysis of energy utilisation efficiency in laser-GTA hybrid welding process[J]. Science & Technology of Welding & Joining, 2014, 19(7): 541 − 546.
    Turichin G, Tsibulsky I, Somonov V, et al. Laser-TIG welding of titanium alloys[J]. IOP Conference Series: Materials Science and Engineering, 2016, 142(1): 1757 − 1765.
    史吉鹏, 王红阳, 杨林波, 等. 钛合金激光-TIG复合焊接保护状态对焊缝成形及性能影响[J]. 焊接学报, 2017, 38(2): 61 − 65.

    Shi Jipeng, Wang Hongyang, Yang Linbo, et al. Effect of protection state of titanium alloy laser-TIG hybrid welding on weld formation and properties[J]. Transactions of the China Welding Institution, 2017, 38(2): 61 − 65.
    Brandizzi M, Mezzacappa C, Tricarico L, et al. Optimization of Ti6Al4V titanium alloy laser-arc hybrid weld parameters[J]. Welding International, 2011, 26(12): 1 − 9.
    史吉鹏. 钛合金低功率脉冲激光调控电弧焊接物理机制及工艺研究[D]. 大连: 大连理工大学, 2019.

    Shi Jipeng. Study on physical mechanism and process of low power pulsed laser regulated arc welding for titanium alloy[D]. Dalian: Dalian University of Technology, 2019.
    Leng X, Zhang G, Wu L. The characteristic of twin-electrode TIG coupling arc pressure[J]. Journal of Physics D Applied Physics, 2006, 39(6): 1120 − 1126. doi: 10.1088/0022-3727/39/6/017
    安藤弘平, 长谷川光雄. 焊接电弧现象[M]. 施雨湘, 译. 北京: 机械工业出版社, 1985.

    Ando K, Hasegawa M. Welding arc phenomenon[M]. Shi Yuxiang, trans. Beijing: China Mechine Press, 1985.
  • Related Articles

    [1]LIU Liming, YANG Huanyu, XU Xinkun. Study on low power laser induced twin arc high-efficiency welding TA2 medium-thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 1-7. DOI: 10.12073/j.hjxb.20211114001
    [2]LIU Zhengjun, LI Yuhang, SU Yunhai. Numerical simulation of heat transfer and fluid flow for arc plasma in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 120-125. DOI: 10.12073/j.hjxb.2019400138
    [3]GUO Wei, GUO Ning, DU YongPeng, WANG Fu, FENG Jicai. Effect of different underwater environment media on composition and temperature of underwater welding arc plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 13-16.
    [4]SUN Qian, WANG Xuyou, WANG Wei, LI Xiaoyu XU Fujia, LIAO Ying. Study on changing ruler of plasma in laser welding and the quick testing method of blowhole defects——extract method of feature parameters for blowhole defect[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 1-4.
    [5]WANG Xuyou, SUN Qian, WANG Wei, Li Xiaoyu. Study on the changing ruler of plasma in laser welding and the quick testing method of blowhole defects——integral analysis method for signals detection[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 45-48.
    [6]LI Bin, ZHAO Zeyang, WANG Chunming, HU Xiyuan, GUO Lian. Behaviors of plasma and keyhole in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 87-91.
    [7]CHEN Minghua, LI Chenbin, LIU Liming. Coupling behavior of plasmas during laser-arc hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 53-56.
    [8]LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28.
    [9]WANG Chun-ming, HU Lun-ji, HU Xi-yuan, DU Han-bin. Measurement and analysis of plasma optic signal during laser welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 83-86,90.
    [10]WANG Chun-ming, YU Fu-lin, DUAN Ai-qin, HU Lun-jin. Relationship Between Penetration Depth and Plasma Optic Signal During Partial-Penetration Laser Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 45-48,56.
  • Cited by

    Periodical cited type(3)

    1. 张小强,云泽,蒋庆梅,龙迅,李岩,曹鹏昊. X80M管道全自动焊环焊缝热影响区冷却时间预测模型. 油气储运. 2025(04): 411-419 .
    2. 武少杰,曲皇屹,程方杰. 基于变速GTAW焊接温度场解析模型的熔深预测研究. 天津大学学报(自然科学与工程技术版). 2024(01): 64-72 .
    3. 范文学. 有限元分析技术对焊接接头疲劳特性的影响. 焊接技术. 2024(12): 28-32+145 .

    Other cited types(1)

Catalog

    Article views (413) PDF downloads (146) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return