Advanced Search
REN Anshi, QU Songtao, DONG Xinhua, SHI Qingyu, ZHANG Gong, ZHU Zhongyan. Effect of O2 content on soldering quality in Sn-9Zn-2.5Bi-1.5In low-temperature wave soldering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 68-73, 99. DOI: 10.12073/j.hjxb.20211027003
Citation: REN Anshi, QU Songtao, DONG Xinhua, SHI Qingyu, ZHANG Gong, ZHU Zhongyan. Effect of O2 content on soldering quality in Sn-9Zn-2.5Bi-1.5In low-temperature wave soldering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 68-73, 99. DOI: 10.12073/j.hjxb.20211027003

Effect of O2 content on soldering quality in Sn-9Zn-2.5Bi-1.5In low-temperature wave soldering

More Information
  • Received Date: October 26, 2021
  • Available Online: April 20, 2022
  • A new Sn-9Zn-2.5Bi-1.5In solder is prepared, a wave soldering nitrogen protection system is developed, and the soldering quality of the solder under different oxygen content is investigated. The results show that the modified nitrogen protection system can reduce the dynamic oxygen content to less than 0.06% by increasing the nitrogen flow. Reducing O2 content in the soldering zone can significantly decrease the number of bridging, poor filling and pore defects, and the failure rate is controlled within 0.20%. Under the critical value of 0.50% oxygen content, the joint can be soldered at low temperature under the condition of 225 ℃ setting temperature. The soldering quality can meet the needs of large-scale production. EDS analysis shows that the content of Zn in the oxide dregs is increased by 84.9% compared with the original Sn-9Zn-2.5Bi-1.5In alloy, and the easy oxidation tendency of Zn leads to the formation of a large number of oxide slags. Reducing the oxygen content in the soldering zone can restrain the formation of oxide slags on the wave's surface. Nitrogen protection can solve the soldering defects of Sn-Zn alloy to realize low-temperature wave soldering at 225 ℃.
  • 王佐. 电子产品在焊接过程中的可靠性探究[J]. 电子测试, 2015(4): 128 − 130. doi: 10.3969/j.issn.1000-8519.2015.04.050

    Wang Zuo. Research on reliability of electronic products in welding process[J]. Electronic Test, 2015(4): 128 − 130. doi: 10.3969/j.issn.1000-8519.2015.04.050
    孙文栋. Sn-Zn系中温无铅焊接的性能优化研究及应用[D]. 北京: 清华大学, 2020.

    Sun Wendong. Research and application of performance optimization of Sn-Zn system medium temperature lead-free Soldering[D]. Beijing: Tsinghua University, 2020.
    Abtew M, Selvaduray G. Lead-free solders in microelectronics[J]. Materials Science and Engineering:R:Reports, 2000, 27(5): 95 − 141.
    王正宏, 于红娇, 李胜明, 等. Sn-Zn-Bi-In-P新型无铅焊料性能研究[J]. 电子元件与材料, 2014, 33(11): 95 − 98.

    Wang Zhenghong, Yu Hongjiao, Li Shengming, et al. Study on properties of Sn-Zn-Bi-In-P new lead-free solder[J]. Electronic Components and Materials, 2014, 33(11): 95 − 98.
    周健, 孙扬善, 薛烽. Sn-Zn-Bi无铅 Sn-Zn-Bi 无铅焊料表面张力及润湿性研 究表面张力及润湿性研究[J]. 电子元件与材料, 2005, 24(8): 49 − 52. doi: 10.3969/j.issn.1001-2028.2005.08.017

    Zhou Jian, Sun Yangshan, Xue Feng. Study on surface tension and wettability of Sn-Zn-Bi lead-free solder[J]. Electronic Components and Materials, 2005, 24(8): 49 − 52. doi: 10.3969/j.issn.1001-2028.2005.08.017
    Chen G, Li X, Ma J. Effect of thermal cycling on the growth of intermetallic compounds at the Sn-Zn-Bi-In-P lead-free solder/Cu interface[J]. Journal of Electronic Materials, 2006, 35(10): 1873 − 1878. doi: 10.1007/s11664-006-0170-5
    Ma J, Chen G, Li X, et al. Study of New Types Lead-Free Solder Alloys of Sn-Ag-Cu-Al-Ni and Sn-Zn-Bi-In-P[C]//2006 7th International Conference on Electronic Packaging Technology. IEEE, Shanghai, China, 2006: 1 − 7.
    Wu C, Law C, Yu D Q, et al. The wettability and microstructure of Sn-Zn-RE alloys[J]. Journal of Electronic Materials, 2003, 32: 63 − 69. doi: 10.1007/s11664-003-0238-4
    黄惠珍, 赵亚楠, 彭如意, 等. Sn-9Zn-0.1S/Cu焊点液固界面金属间化合物的生长动力学[J]. 焊接学报, 2019, 40(6): 23 − 28. doi: 10.12073/j.hjxb.2019400149

    Huang Huizhen, Zhao Yanan, Peng Ruyi, et al. Growth kinetics of Intermetallic compounds at liquid-solid interface of Sn-9Zn-0.1s/Cu solder joints[J]. Transactions of the China Welding Institution, 2019, 40(6): 23 − 28. doi: 10.12073/j.hjxb.2019400149
    韩若男, 薛松柏, 叶焕, 等. Sn-Zn系无铅钎料润湿性的研究进展[J]. 焊接, 2011(11): 23 − 27. doi: 10.3969/j.issn.1001-1382.2011.11.005

    Han Ruonan, Xue Songbai, Ye Huan, et al. Research progress on wettability of Sn-Zn lead-free solder[J]. Welding & Joining, 2011(11): 23 − 27. doi: 10.3969/j.issn.1001-1382.2011.11.005
    Liu H, Xue F, Zhou J. Study of flux on wetting behavior of Sn-Zn lead-free solders[J]. Advanced Materials Research, 2011, 189-193: 3230 − 3237.
    肖盈盈, 周健, 薛烽, 等. Sn-Zn系无铅焊料研究和亟待解决的问题[J]. 电子与封装, 2006, 6(4): 10 − 14. doi: 10.3969/j.issn.1681-1070.2006.04.003

    Xiao Yingying, Zhou Jian, Xue Feng, et al. Research and urgent problems of Sn-Zn lead-free solder[J]. Electronics & Packaging, 2006, 6(4): 10 − 14. doi: 10.3969/j.issn.1681-1070.2006.04.003
    Yoon S W, Choi W K, Lee H M. Calculation of surface tension and wetting properties of Sn-Based solder alloys[J]. Scripta Materialia, 1999, 40(3): 297 − 302. doi: 10.1016/S1359-6462(98)00417-5
    魏秀琴, 周浪, 黄惠珍. 氧化对Sn-Zn系无铅焊料润湿性的影响[J]. 中国有色金属学报, 2009, 19(1): 174 − 178. doi: 10.3321/j.issn:1004-0609.2009.01.028

    Wei Xiuqin, Zhou Lang, Huang Huizhen. Effect of oxidation on wettability of Sn-Zn lead-free solder[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1): 174 − 178. doi: 10.3321/j.issn:1004-0609.2009.01.028

Catalog

    Article views (298) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return