Citation: | ZHONG Yang, ZHENG Zhizhen, Li Jianjun, ZHANG Hua. Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005 |
Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Materials Science and Engineering:A, 2020, 772: 138633. doi: 10.1016/j.msea.2019.138633
|
Chen X, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering:A, 2017, 703: 567 − 577. doi: 10.1016/j.msea.2017.05.024
|
Zhu Zhengwu, Ma Xiuquan, Wang Chunming, et al. Grain refinement and orientation alternation of 10 mm 316L welds prepared by magnetic field assisted narrow gap laser-MIG hybrid welding[J]. Materials Characterization, 2020, 164: 110311. doi: 10.1016/j.matchar.2020.110311
|
陈志伟, 马程远, 陈波, 等. 激光-MIG复合焊接中厚度不锈钢组织及性能研究[J]. 激光与光电子学进展, 2020, 57(23): 213 − 220.
Chen Zhiwei, Ma Chengyuan, Chen Bo, et al. Study on microstructure and properties of medium-thick stainless steel by laser-MIG hybrid welding[J]. Laser & Optoelectronics Progress, 2020, 57(23): 213 − 220.
|
李旭文, 宋刚, 张兆栋, 等. 激光诱导电弧复合增材制造316L不锈钢的组织和性能[J]. 中国激光, 2019, 46(12): 101 − 109.
Li Xuwen, Song Gang, Zhang Zhaodong, et al. Microstructure and properties of 316L stainless steel produced by laser-induced arc hybrid additive manufacturing[J]. Chinese Journal of Lasers, 2019, 46(12): 101 − 109.
|
Hänninen H, Romu J, Ilola R, et al. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties[J]. Journal of Materials Processing Technology, 2001, 117(3): 424 − 430. doi: 10.1016/S0924-0136(01)00804-4
|
Ming Zhu, Wang Kehong, Liu Zeng. Effect of the cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metals[J]. China Welding, 2020, 29(2): 48 − 52.
|
Li D, Yang D, Zhang G, et al. Microstructure and mechanical properties of welding metal with high Cr-Ni austenite wire through Ar-He-N2 gas metal arc welding[J]. Journal of Manufacturing Processes, 2018, 35: 190 − 196. doi: 10.1016/j.jmapro.2018.07.026
|
Reyes-Hernández D, Manzano-Ramírez A, Encinas A, et al. Addition of nitrogen to GTAW welding duplex steel 2205 and its effect on fatigue strength and corrosion[J]. Fuel, 2017, 198: 165 − 169. doi: 10.1016/j.fuel.2017.01.008
|
Feng H, Li H, Wu X, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy[J]. Journal of Materials Science & Technology, 2018, 34(10): 1781 − 1790.
|
Fu Y, Wu X, Han E H, et al. Effects of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels in acidic chloride solutions[J]. Electrochimica Acta, 2009, 54(16): 4005 − 4014. doi: 10.1016/j.electacta.2009.02.024
|
Metikoš-Huković M, Babić R, Grubač Z, et al. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution[J]. Corrosion Science, 2011, 53(6): 2176 − 2183. doi: 10.1016/j.corsci.2011.02.039
|
Ribic B, Palmer T A, DebRoy T. Problems and issues in laser-arc hybrid welding[J]. International Materials Reviews, 2009, 54(4): 223 − 244. doi: 10.1179/174328009X411163
|
Wang C, Liu T G, Zhu P, et al. Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing[J]. Materials Science and Engineering:A, 2020, 796: 140006. doi: 10.1016/j.msea.2020.140006
|
Wu W, Xue J, Wang L, et al. Forming process, microstructure, and mechanical properties of thin-walled 316L stainless steel using speed-cold-welding additive manufacturing[J]. Metals, 2019, 9(1): 109. doi: 10.3390/met9010109
|
鲍亮亮, 王勇, 张洪杰, 等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J]. 焊接学报, 2021, 42(3): 26-33.
Bao Liangliang, Wang Yong, Zhang Hongjie, et al. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J] Transactions of the China Welding Institution, 2021, 42(3): 26-33.
|
王子然, 左善超, 张善保, 等. 硅对304不锈钢GMAW高速焊接头组织性能的影响[J]. 焊接学报, 2020, 41(2): 18 − 23. doi: 10.12073/j.hjxb.20190912001
Wang Ziran, Zuo Shanchao, Zhang Shanbao, et al. Effect of silicon on microstructure and properties of highspeed GMAW welded joint of 304 stainless steel[J]. Transactions of the China Welding Institution, 2020, 41(2): 18 − 23. doi: 10.12073/j.hjxb.20190912001
|
Wu C, Li S, Zhang C, et al. Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates[J]. Journal of Materials Science, 2016, 51(5): 2529 − 2539. doi: 10.1007/s10853-015-9565-0
|
Kong D, Dong C, Ni X, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. Journal of Materials Science & Technology, 2019, 35(7): 1499 − 1507.
|
Chen L, Liu W, Dong B, et al. Insight into electrochemical passivation behavior and surface chemistry of 2205 duplex stainless steel: effect of tensile elastic stress[J]. Corrosion Science, 2021, 193: 109903.
|
Lodhi M J K, Deen K M, Haider W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media[J]. Materialia, 2018, 2: 111 − 121. doi: 10.1016/j.mtla.2018.06.015
|
Zhang Y, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting[J]. Corrosion Science, 2020, 163: 108241. doi: 10.1016/j.corsci.2019.108241
|
Jiang Z, Feng H, Li H, et al. Relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures[J]. Materials, 2017, 10(8): 861. doi: 10.3390/ma10080861
|
Fellman A, Kujanpää V. The effect of shielding gas composition on welding performance and weld properties in hybrid CO2 laser–gas metal arc welding of carbon manganese steel[J]. Journal of Laser Applications, 2006, 18(1): 12 − 20. doi: 10.2351/1.2164481
|
Mu Z, Chen X, Zheng Z, et al. Laser cooling arc plasma effect in laser-arc hybrid welding of 316L stainless steel[J]. International Journal of Heat and Mass Transfer, 2019, 132: 861 − 870. doi: 10.1016/j.ijheatmasstransfer.2018.12.050
|
Hertzman S, Jarl M. A thermodynamic analysis of the Fe-Cr-N system[J]. Metallurgical Transactions A, 1987, 18(10): 1745 − 1752. doi: 10.1007/BF02646206
|
Kah P, Martikainen J. Influence of shielding gases in the welding of metals[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(9-12): 1411 − 1421. doi: 10.1007/s00170-012-4111-6
|
Suutala N, Takalo T, Moisio T. Ferritic-austenitic solidification mode in austenitic stainless steel welds[J]. Metallurgical Transactions A, 1980, 11(5): 717 − 725. doi: 10.1007/BF02661201
|
Li H, Jiang Z, Yang Y, et al. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 517 − 524. doi: 10.1016/S1674-4799(09)60090-X
|