Advanced Search
ZHONG Yang, ZHENG Zhizhen, Li Jianjun, ZHANG Hua. Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005
Citation: ZHONG Yang, ZHENG Zhizhen, Li Jianjun, ZHANG Hua. Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005

Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance

More Information
  • Received Date: April 20, 2021
  • Available Online: December 22, 2021
  • In order to enhance the MIG arc stability, improve the internal microstructure and strengthen the corrosion resistance of 316L stainless steel weldments manufactured by MIG under the pure argon gas, a 1 200 W low power laser was introduced to induce compression on the MIG arc, with N2 mixed into Ar to explore the effect of Ar-N2 mixed shielding gas with different flow rates on the microstructure and corrosion resistance of the 316L welding seam. Experimental observations display that the MIG arc became more stable under the induced effect of 1 200 W laser. With the increase of N2 gas flow rate, the fusion line of the molted pool become smoother and the internal porosity defects are significantly reduced. XRD tests and microstructure observations indicate that the content of internal γ-phase increase significantly. It can be clearly seen that most fine cellular γ phase distributed uniformly in the lower middle regions of the molted pool, and the upper middle regions were dendritic γ phase, with its primary dendrite spacing gradually decreased. As the N2 gas flow rate increase to 5 L/min, the micro-hardness of the welding seam could be enhanced by 20 HV. Electrochemical polarization tests revealed that the Laser-MIG 316L welding seam formed under the Ar-N2 mixed gas exhibit stronger corrosion resistance. Above experiments confirmed that the N2-assisted laser-MIG hybrid welding technology can improve the microstructure and corrosion resistance of 316L stainless steel weldments, and when the Ar : N2 gas flow rate is 20 : 5, the strengthening effect of γ phase is most significant and the best corrosion resistance can be achieved comprehensively.
  • Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Materials Science and Engineering:A, 2020, 772: 138633. doi: 10.1016/j.msea.2019.138633
    Chen X, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering:A, 2017, 703: 567 − 577. doi: 10.1016/j.msea.2017.05.024
    Zhu Zhengwu, Ma Xiuquan, Wang Chunming, et al. Grain refinement and orientation alternation of 10 mm 316L welds prepared by magnetic field assisted narrow gap laser-MIG hybrid welding[J]. Materials Characterization, 2020, 164: 110311. doi: 10.1016/j.matchar.2020.110311
    陈志伟, 马程远, 陈波, 等. 激光-MIG复合焊接中厚度不锈钢组织及性能研究[J]. 激光与光电子学进展, 2020, 57(23): 213 − 220.

    Chen Zhiwei, Ma Chengyuan, Chen Bo, et al. Study on microstructure and properties of medium-thick stainless steel by laser-MIG hybrid welding[J]. Laser & Optoelectronics Progress, 2020, 57(23): 213 − 220.
    李旭文, 宋刚, 张兆栋, 等. 激光诱导电弧复合增材制造316L不锈钢的组织和性能[J]. 中国激光, 2019, 46(12): 101 − 109.

    Li Xuwen, Song Gang, Zhang Zhaodong, et al. Microstructure and properties of 316L stainless steel produced by laser-induced arc hybrid additive manufacturing[J]. Chinese Journal of Lasers, 2019, 46(12): 101 − 109.
    Hänninen H, Romu J, Ilola R, et al. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties[J]. Journal of Materials Processing Technology, 2001, 117(3): 424 − 430. doi: 10.1016/S0924-0136(01)00804-4
    Ming Zhu, Wang Kehong, Liu Zeng. Effect of the cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metals[J]. China Welding, 2020, 29(2): 48 − 52.
    Li D, Yang D, Zhang G, et al. Microstructure and mechanical properties of welding metal with high Cr-Ni austenite wire through Ar-He-N2 gas metal arc welding[J]. Journal of Manufacturing Processes, 2018, 35: 190 − 196. doi: 10.1016/j.jmapro.2018.07.026
    Reyes-Hernández D, Manzano-Ramírez A, Encinas A, et al. Addition of nitrogen to GTAW welding duplex steel 2205 and its effect on fatigue strength and corrosion[J]. Fuel, 2017, 198: 165 − 169. doi: 10.1016/j.fuel.2017.01.008
    Feng H, Li H, Wu X, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy[J]. Journal of Materials Science & Technology, 2018, 34(10): 1781 − 1790.
    Fu Y, Wu X, Han E H, et al. Effects of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels in acidic chloride solutions[J]. Electrochimica Acta, 2009, 54(16): 4005 − 4014. doi: 10.1016/j.electacta.2009.02.024
    Metikoš-Huković M, Babić R, Grubač Z, et al. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution[J]. Corrosion Science, 2011, 53(6): 2176 − 2183. doi: 10.1016/j.corsci.2011.02.039
    Ribic B, Palmer T A, DebRoy T. Problems and issues in laser-arc hybrid welding[J]. International Materials Reviews, 2009, 54(4): 223 − 244. doi: 10.1179/174328009X411163
    Wang C, Liu T G, Zhu P, et al. Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing[J]. Materials Science and Engineering:A, 2020, 796: 140006. doi: 10.1016/j.msea.2020.140006
    Wu W, Xue J, Wang L, et al. Forming process, microstructure, and mechanical properties of thin-walled 316L stainless steel using speed-cold-welding additive manufacturing[J]. Metals, 2019, 9(1): 109. doi: 10.3390/met9010109
    鲍亮亮, 王勇, 张洪杰, 等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J]. 焊接学报, 2021, 42(3): 26-33.

    Bao Liangliang, Wang Yong, Zhang Hongjie, et al. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J] Transactions of the China Welding Institution, 2021, 42(3): 26-33.
    王子然, 左善超, 张善保, 等. 硅对304不锈钢GMAW高速焊接头组织性能的影响[J]. 焊接学报, 2020, 41(2): 18 − 23. doi: 10.12073/j.hjxb.20190912001

    Wang Ziran, Zuo Shanchao, Zhang Shanbao, et al. Effect of silicon on microstructure and properties of highspeed GMAW welded joint of 304 stainless steel[J]. Transactions of the China Welding Institution, 2020, 41(2): 18 − 23. doi: 10.12073/j.hjxb.20190912001
    Wu C, Li S, Zhang C, et al. Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates[J]. Journal of Materials Science, 2016, 51(5): 2529 − 2539. doi: 10.1007/s10853-015-9565-0
    Kong D, Dong C, Ni X, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. Journal of Materials Science & Technology, 2019, 35(7): 1499 − 1507.
    Chen L, Liu W, Dong B, et al. Insight into electrochemical passivation behavior and surface chemistry of 2205 duplex stainless steel: effect of tensile elastic stress[J]. Corrosion Science, 2021, 193: 109903.
    Lodhi M J K, Deen K M, Haider W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media[J]. Materialia, 2018, 2: 111 − 121. doi: 10.1016/j.mtla.2018.06.015
    Zhang Y, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting[J]. Corrosion Science, 2020, 163: 108241. doi: 10.1016/j.corsci.2019.108241
    Jiang Z, Feng H, Li H, et al. Relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures[J]. Materials, 2017, 10(8): 861. doi: 10.3390/ma10080861
    Fellman A, Kujanpää V. The effect of shielding gas composition on welding performance and weld properties in hybrid CO2 laser–gas metal arc welding of carbon manganese steel[J]. Journal of Laser Applications, 2006, 18(1): 12 − 20. doi: 10.2351/1.2164481
    Mu Z, Chen X, Zheng Z, et al. Laser cooling arc plasma effect in laser-arc hybrid welding of 316L stainless steel[J]. International Journal of Heat and Mass Transfer, 2019, 132: 861 − 870. doi: 10.1016/j.ijheatmasstransfer.2018.12.050
    Hertzman S, Jarl M. A thermodynamic analysis of the Fe-Cr-N system[J]. Metallurgical Transactions A, 1987, 18(10): 1745 − 1752. doi: 10.1007/BF02646206
    Kah P, Martikainen J. Influence of shielding gases in the welding of metals[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(9-12): 1411 − 1421. doi: 10.1007/s00170-012-4111-6
    Suutala N, Takalo T, Moisio T. Ferritic-austenitic solidification mode in austenitic stainless steel welds[J]. Metallurgical Transactions A, 1980, 11(5): 717 − 725. doi: 10.1007/BF02661201
    Li H, Jiang Z, Yang Y, et al. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 517 − 524. doi: 10.1016/S1674-4799(09)60090-X

Catalog

    Article views (534) PDF downloads (68) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return