Advanced Search
YU Han, PAN Longzheng, ZHANG Linjie, LIANG Wensheng, BAI Li′an. Effect of beam oscillating and nitrogen alloying upon microstructure and mechanical properties in laser welding of molybdenum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 49-55. DOI: 10.12073/j.hjxb.20220101005
Citation: YU Han, PAN Longzheng, ZHANG Linjie, LIANG Wensheng, BAI Li′an. Effect of beam oscillating and nitrogen alloying upon microstructure and mechanical properties in laser welding of molybdenum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 49-55. DOI: 10.12073/j.hjxb.20220101005

Effect of beam oscillating and nitrogen alloying upon microstructure and mechanical properties in laser welding of molybdenum alloy

More Information
  • Received Date: December 31, 2021
  • Available Online: March 29, 2022
  • The problems of coarse grains and intergranular segregation in molybdenum alloy welding lead to poor mechanical properties of the joints. The experimental study was carried out by using laser beam oscillation and nitrogen alloying. The results show that when using beam oscillating only, the average grain size in the weld zone was reduced by about 28 %, the microhardness of the weld center was increased from 190 HV to 200 HV, and the tensile strength of molybdenum alloy joint was increased from 29.83 MPa to 130.03 MPa. When using nitrogen alloying only (shielding gas 10 % N2 + 90 % Ar), the microhardness of weld center was increased from 190 HV to 240 HV, and the tensile strength of molybdenum alloy joint was increased from 29.83 MPa to 350.94 MPa. Furthermore, the tensile strength of the joint reached 439.43 MPa which was 67.8% of the tensile strength of the base metal when laser oscillating and nitrogen alloying were used simultaneously, and the fracture mode changes from intergranular fracture to intergranular fracture and transgranular cleavage fracture. The analysis shows that the strengthening effect of nitrogen alloying on the properties of the joint benefits from the formation of Mo2N phase in the grain and at the grain boundary.
  • Zhang G, Liu G, Sun Y, et al. Microstructure and strengthening mechanisms of molybdenum alloy wires doped with lanthanum oxide particles[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(1): 173 − 176. doi: 10.1016/j.ijrmhm.2008.06.007
    Tan C, Yang J, Zhao X, et al. Influence of Ni coating on interfacial reactions and mechanical properties in laser welding-brazing of Mg/Ti butt joint[J]. Journal of Alloys and Compounds, 2018, 764: 186 − 201. doi: 10.1016/j.jallcom.2018.06.039
    曹海涛, 张鹏, 杜云慧, 等. Mg-Gd-Y-Zr激光焊接工艺优化及高温力学性能[J]. 焊接学报, 2020, 41(10): 87 − 96.

    Cao Haitao, Zhang Peng, Du Yunhui, et al. Optimization of Mg-Gd-Y-Zr laser welding process parameters and study on high temperature mechanical properties[J]. Transactions of the China Welding Institution, 2020, 41(10): 87 − 96.
    Ning J, Zhang L, Bai Q, et al. Comparison of the microstructure and mechanical performance of 2A97 Al-Li alloy joints between autogenous and non-autogenous laser welding[J]. Materials & Design, 2017, 120: 144 − 156.
    Xie M, Li Y, Shang X, et al. Microstructure and mechanical properties of a fiber welded socket-Joint made of powder metallurgy molybdenum alloy[J]. Metals, 2019, 9(6): 640. doi: 10.3390/met9060640
    Xie M, Li Y, Shang X, et al. Effect of heat input on porosity defects in a fiber laser welded socket-joint made of powder metallurgy molybdenum alloy[J]. Materials, 2019, 12(9): 1433. doi: 10.3390/ma12091433
    Gao M, Liao W, Chen C. Improving the interfacial bonding strength of dissimilar PA66 plastic and 304 stainless steel by oscillating laser beam[J]. Optics & Laser Technology, 2021, 138: 106869.
    周立涛, 王旭友, 王威, 等. 激光扫描焊接工艺对铝合金焊接气孔率的影响[J]. 焊接学报, 2014, 35(10): 65 − 68.

    Zhou Litao, Wang Xuyou, Wang Wei, et al. Effects of laser weaving welding process on porosity rate of aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(10): 65 − 68.
    Jiang Z, Chen X, Li H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy[J]. Materials & Design, 2020, 186: 108195.
    Wang Z, Oliveira J, Zeng Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 2019, 111: 58 − 65.
    黄瑞生, 邹吉鹏, 孟圣昊, 等. 铝合金激光扫描焊接工艺特性[J]. 焊接学报, 2019, 40(4): 61 − 66. doi: 10.12073/j.hjxb.2019400101

    Huang Ruisheng, Zou Jipeng, Meng Shenghao, et al. Dynamic behavior of laser scanning welding pool and plasma[J]. Transactions of the China Welding Institution, 2019, 40(4): 61 − 66. doi: 10.12073/j.hjxb.2019400101
    Kurishita H, Tokunaga O, Yoshinaga H. Effect of nitrogen on the intergranular brittleness in molybdenum[J]. Materials Transactions, JIM, 1990, 31(3): 190 − 194. doi: 10.2320/matertrans1989.31.190
    Nagae M, Ise N, Takada J, et al. Multi-step internal nitriding of molybdenum-zirconium alloys[J]. Metals, 2016, 80(11): 702 − 706.
    Zhang L, Zhang L, Ning J, et al. On the role of pre-nitriding on improving the weldability of molybdenum alloy[J]. Materials & Design, 2021, 198: 109377.
    Olds L, Rengstorff G. Effects of oxygen, nitrogen and carbon on the ductility of cast molybdenum[J]. Jom, 1956, 8(2): 150 − 155. doi: 10.1007/BF03377662
    Zhang L, Zhang L, Ning J, et al. On the laser gas (N2) alloying in the welding of molybdenum alloy[J]. Journal of Materials Processing Technology, 2021, 296: 117184. doi: 10.1016/j.jmatprotec.2021.117184
    Ferro R, Marazza R. The Mo-N (Molybdenum-Nitrogen) system[J]. Bulletin of Alloy Phase Diagrams, 1980, 1(2): 82 − 85. doi: 10.1007/BF02881198
  • Related Articles

    [1]CAO Runping, HAN Yongquan, LIU Xiaohu, HONG Haitao, HAN Jiao. Effect of rare earth Ce on arc and droplet transfer behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 95-102. DOI: 10.12073/j.hjxb.20231109001
    [2]MING Zhu<sup>1,2</sup>, WANG Kehong<sup>1</sup>, WANG wei<sup>2</sup>, FAN Chenglei<sup>3</sup>, WANG Youqi<sup>2</sup>, FENG Shengqiang<sup>2</sup>. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 24-28. DOI: 10.12073/j.hjxb.2018390168
    [3]LIU Xiyang<sup>1,2</sup>, SUN Fenglian<sup>1</sup>, ZHAO Yumin<sup>2</sup>, XU Kegui<sup>2</sup>, WANG Yizhe<sup>2</sup>. Analysis of arc stability of self-shielded flux-cored wire laser-arc hybrid[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 17-23. DOI: 10.12073/j.hjxb.2018390167
    [4]XU Wanghui, LIN Sanbao, YANG Chunli, FAN Chenglei. Study on droplet transfer of swing arc narrow gap GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 109-114.
    [5]SHI Yonghua, ZHENG Zepei, HUANG Jin. Arc stability of underwater wet flux-cored arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 49-53.
    [6]SHI Yu, HUANG Jiankang, NIE Jing, FAN Ding. Correlation of arc acoustic signals and droplet transfer in aluminum pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 29-32.
    [7]BAO Ailian, GENG Zheng, LIU Wanhui. Analysis of stability in droplet transfer process of GMAW based on self-correlation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 77-80.
    [8]LIU Gang, FENG Yun, LI Jun-yue, FAN Rong-huan. Arc spectrum signals of droplet spray transfer in MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 40-44.
    [9]Jiao Xiangdong, Pan Jiluan, Zhang Hua. A. C. MAG Welding Arc Stability and Its Control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 49-55.
    [10]Ding Wei, Hou Qixian, Dong Lingxuan, Wang Yuanliang. Arc Stability of Aluminium Alloy Pulsed MIG Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (2): 116-121.
  • Cited by

    Periodical cited type(9)

    1. 赵秋,唐琨,吴维青,李英豪,邓俊逸,陈鹏. 疲劳裂纹萌生与短裂纹扩展仿真方法. 机械科学与技术. 2025(02): 361-372 .
    2. 赵秋,唐琨,李英豪,吴维青. 基于Roe-Siegmund循环内聚力模型焊趾疲劳裂纹萌生仿真. 焊接学报. 2024(03): 61-67+132 . 本站查看
    3. 舒伟,高静坤,李海峰,邓彩艳,刘强,龚宝明. 基于零点有效缺口应力的薄板焊接接头疲劳评估. 焊接学报. 2024(06): 121-128 . 本站查看
    4. 张红卫,王松,黄波. 化肥催化装置转子轮盘疲劳寿命预测算法的设计与仿真. 化工机械. 2023(05): 733-740 .
    5. 钟广生,魏国前,闫梦煜,冯梓彬. 焊趾半径对疲劳短裂纹演化行为的影响. 焊接学报. 2023(11): 88-95+133-134 . 本站查看
    6. 刘小刚,申顺,朱阳阳. 基于改进Voronoi图法的焊接接头微观组织建模. 焊接学报. 2022(01): 60-66+117 . 本站查看
    7. 陈秉智,何正平,李向伟,兆文忠. 某构件焊缝疲劳开裂的寿命预测方法应用对比. 焊接学报. 2022(05): 63-68+117 . 本站查看
    8. 庞嘉尧,张萃,程伟. 铝合金疲劳性能研究进展. 特种铸造及有色合金. 2022(06): 717-726 .
    9. 刘捷,谢美蓉,王梦飞,刘天亮,王克鸿. 激光振荡扫描焊接Ti_2AlNb/TC4焊缝组织及力学性能. 焊接. 2021(11): 21-26+62 .

    Other cited types(6)

Catalog

    Article views (289) PDF downloads (37) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return