Advanced Search
ZHANG Chengcong, YU Liling, WANG Yuhua, CHANG Baohua, Amir Shirzadi, WU Kaiming. Research progress of welding and joining by using the high entropy alloys as filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 7-15. DOI: 10.12073/j.hjxb.20211013001
Citation: ZHANG Chengcong, YU Liling, WANG Yuhua, CHANG Baohua, Amir Shirzadi, WU Kaiming. Research progress of welding and joining by using the high entropy alloys as filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 7-15. DOI: 10.12073/j.hjxb.20211013001

Research progress of welding and joining by using the high entropy alloys as filler metals

More Information
  • Received Date: October 12, 2021
  • Available Online: April 12, 2022
  • High entropy alloys (HEAs) are new generation of alloys which have been developed rapidly in recent years. The composition design of HEAs is a breakthrough of the traditional alloy design idea, and it is a new developing direction of alloy theories. With the high entropy effect, severe lattice distortion effect, sluggish diffusion effect and cocktail effect, the HEAs have promising applications in welding fields. This paper summarized the research status and existing problems in developing the welding filler materials and welding processes utilizing the four effects of HEAs, and the trend of development is prospected as well.
  • Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299 − 303. doi: 10.1002/adem.200300567
    Beke D L, Erdelyi G. On the diffusion in high-entropy alloys[J]. Materials Letters, 2016, 164: 111 − 113. doi: 10.1016/j.matlet.2015.09.028
    Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties[J]. Journal of Alloys and Compounds, 2018, 760: 15 − 30. doi: 10.1016/j.jallcom.2018.05.067
    Paul T R, Belovai V, Murch G E. Analysis of diffusion in high entropy alloys[J]. Materials Chemistry and Physics, 2018, 210: 301 − 308. doi: 10.1016/j.matchemphys.2017.06.039
    Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448 − 511. doi: 10.1016/j.actamat.2016.08.081
    张义福, 张华, 苏展展, 等. 钛/钢激光焊接头中脆性化合物调控研究进展[J]. 兵器材料科学与工程, 2019, 29(6): 122 − 129.

    Zhang Yifu, Zhang Hua, Su Zhanzhan, et al. Research progress on the regulation of brittle compounds in titanium alloy/steel dissimilar metal joint by laser welding[J]. Ordnance Material Science and Engineering, 2019, 29(6): 122 − 129.
    祝要民, 李青哲, 邱然锋, 等. 钛/钢异种金属焊接的研究现状[J]. 电焊机, 2016, 46(11): 78 − 82.

    Zhu Yaomin, Li Qingzhe, Qiu Ranfeng, et al. Researching status of dissimilar metal welding of titanium and steel[J]. Electric Welding Machine, 2016, 46(11): 78 − 82.
    吕攀, 王克鸿, 朱和国. 钛合金与不锈钢异种金属焊接的研究现状[J]. 热加工工艺, 2017, 46(13): 26 − 32.

    Lü Pan, Wang Kehong, Zhu Heguo. Research status of titanium alloy and stainless steel dissimilar metal welding[J]. Hot Working Technology, 2017, 46(13): 26 − 32.
    Kunce I, Polanski M, Karczewski K, et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping[J]. Journal of Alloys and Compounds, 2015, 648: 751 − 758. doi: 10.1016/j.jallcom.2015.05.144
    Choi M, Ondicho I, Park N, et al. Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure[J]. Journal of Alloys and Compounds, 2019, 780: 959 − 966. doi: 10.1016/j.jallcom.2018.11.265
    Xu Y, Bu Y, Liu J, et al. In-situ high throughput synthesis of high-entropy alloys[J]. Scripta Materialia, 2019, 160: 44 − 47. doi: 10.1016/j.scriptamat.2018.09.040
    Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures[J]. Acta Materialia, 2019, 165: 228 − 240. doi: 10.1016/j.actamat.2018.11.049
    Srikanth V, Laik A, Dey G K. Joining of stainless steel 304L with Zircaloy-4 by diffusion bonding technique using Ni and Ti interlayers[J]. Materials and Design, 2017, 126(4): 141 − 154.
    Jafarian M, Khodabandeh A, Manafi S. Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayer[J]. Materials and Design, 2015, 65: 160 − 164. doi: 10.1016/j.matdes.2014.09.020
    Kundu S, Mishra B, Olson D L, et al. Interfacial reactions and strength properties of diffusion bonded joints of Ti64 alloy and 17-4PH stainless steel using nickel alloy interlayer[J]. Materials and Design, 2013, 51: 714 − 722. doi: 10.1016/j.matdes.2013.04.088
    陈凯, 翟秋亚, 田健, 等. 基于高熵合金中间层的TA2与Q235电阻焊研究[J]. 现代焊接, 2013, 8(41): 36 − 38.

    Chen Kai, Zhai Qiuya, Tian Jian, et al. The resistance welding of TA2 and Q235 base on high entorpy Interlayer alloys[J]. Modern Welding Technology, 2013, 8(41): 36 − 38.
    徐锦锋, 郭嘉宝, 田健, 等. 基于焊缝金属高熵化的钛/钢焊材设计与制备[J]. 铸造技术, 2014, 35(11): 2674 − 2676.

    Xu Jinfeng, Guo Jiabao, Tian Jian, et al. Design and preparation of welding materials applied to welding titanium and steel based on weldmetal high entropy converting[J]. Foundry Technology, 2014, 35(11): 2674 − 2676.
    杨全虎, 翟秋亚, 徐锦锋, 等. Ta1与0Cr18Ni9薄板的储能焊试验[J]. 焊接学报, 2019, 40(9): 116 − 121.

    Yang Quanhu, Zhai Qiuya, Xu Jinfeng, et al. Energy storage welding test of Ta1 and 0Cr18Ni9 thin plates[J]. Transactions of the China Welding Institution, 2019, 40(9): 116 − 121.
    Azhari-Saray H, Sarkari-Khorrami M, Nademi-Babahadi A, et al. Dissimilar resistance spot welding of 6061-T6 aluminum alloy/St-12 carbon steel using a high entropy alloy interlayer[J]. Intermetallics, 2020, 124(3): 106876.
    刘玉林, 罗永春, 石彦彦. 高熵合金CoCrFeMnNi/不锈钢真空扩散焊[J]. 电焊机, 2016, 46(12): 122 − 127.

    Liu Yulin, Luo Yongchun, Shi Yanyan. Vacuum diffusion welding between CoCrFeMnNi high entropy and stainless steel[J]. Electric Welding Machine, 2016, 46(12): 122 − 127.
    李红, 韩祎, 曹健, 等. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1 − 10. doi: 10.11868/j.issn.1001-4381.2020.000950

    Li Hong, Han Yi, Cao Jian, et al. Research progress in high-entropy alloys used in brazing and surface engineering fields[J]. Journal of Materials Engineering, 2021, 49(8): 1 − 10. doi: 10.11868/j.issn.1001-4381.2020.000950
    Zhang L X, Shi J M, Li H W, et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design, 2016, 97: 230 − 238. doi: 10.1016/j.matdes.2016.02.055
    Wang G, Yang Y, He R, et al. A novel high entropy CoFeCrNiCu alloy filler to braze SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40(9): 3391 − 3398. doi: 10.1016/j.jeurceramsoc.2020.03.044
    Yang Y, Wang G, He R, et al. Microstructure and mechanical properties of ZrB2-SiC/Nb joints brazed with CoFeNiCrCuTix high-entropy alloy filler[J]. Journal of the American Ceramic Society, 2021, 104(7): 2992 − 3003. doi: 10.1111/jace.17732
    王秒, 王微, 杨云龙, 等. 钎焊时间对 CoFeNiCrCu 高熵钎料钎焊SiC陶瓷接头组织与性能影响[J]. 航空学报, 2021, 42: 1 − 9.

    Wang Miao, Wang Wei, Yang Yunlong, et al. Effect of brazing time on microstructure and properties of SiC ceramic joint brazed with cofenicrcu high entropy solder[J]. Journal of Aeronautics, 2021, 42: 1 − 9.
    Tillmann W, Ulitzka T, Wojarski L, et al. Development of high entropy alloys for brazing applications[J]. Welding in the World, 2020, 64(1): 201 − 208. doi: 10.1007/s40194-019-00824-y
    Kokabi D, Kaflou A. TiAl/IN718 dissimilar brazing with TiZrNiCuCo high-entropy filler metal: phase characterization and fractography[J]. Welding in the World, 2021, 65(6): 1189 − 1198. doi: 10.1007/s40194-021-01075-6
    Pang S, Sun L, Xiong H, et al. A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy[J]. Scripta Materialia, 2016, 117: 55 − 59. doi: 10.1016/j.scriptamat.2016.02.006
    Dong K W, Kong J, Yang Y, et al. Vacuum brazing of TiAl-based alloy and GH536 superalloy with a low-melting point amorphous Ti35Zr25Be30Co10 filler[J]. Journal of Manufacturing Processes, 2019, 47(5): 410 − 418.
    Gao M, Schneiderman B, Gilbert S M, et al. Microstructural evolution and mechanical properties of nickel-base superalloy brazed joints using a MPCA filler[J]. Metallurgical and Materials Transactions A, 2019, 50(11): 5117 − 5127. doi: 10.1007/s11661-019-05386-8
    Tillmann W, Wojarski L, Stangier D, et al. Application of the eutectic high entropy alloy Nb0.73CoCrFeNi2.1 for high temperature joints[J]. Welding in the World, 2020, 64(9): 1597 − 1604. doi: 10.1007/s40194-020-00944-w
    Liu D, Wang J, Xu M, et al. Evaluation of dissimilar metal joining of aluminum alloy to stainless steel using the filler metals with a high-entropy design[J]. Journal of Manufacturing Processes, 2020, 58(7): 500 − 509.
    Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100- xCu x high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225
    侯光远. 基于焊缝金属高熵化的钛/钢TIG焊研究[D]. 西安: 西安理工大学, 2015.

    Hou Guangyuan. Reserch on gtaw of titanium and steel based on the weld metal high-entroy[D]. Xi′an: Xi′an University of Technology, 2015.
    樊丁, 康玉桃, 黄健康, 等. 铝/钢预置高熵合金粉末对接接头组织及力学性能[J]. 兰州理工大学学报, 2019, 45(6): 1 − 5. doi: 10.3969/j.issn.1673-5196.2019.06.001

    Fan Ding, Kang Yutao, Huang Jiankang, et al. Microstructure and mechanical performance of butt joint of aluminum and steel welded with preset high-entropy alloy powder[J]. Journal of Lanzhou University of Technology, 2019, 45(6): 1 − 5. doi: 10.3969/j.issn.1673-5196.2019.06.001
    鲁一荻, 张骁勇, 彭志刚. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 焊接, 2021(10): 8 − 14.

    Lu Yidi, Zhang Xiaoyong, Peng Zhigang. Research progress on the effect of alloying elements on laser cladding high entropy alloy coating[J]. Welding & Joining, 2021(10): 8 − 14.
    Guo Wei, Cai Yan. Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy[J]. China Welding, 2021, 30(2): 1 − 10.
    Kenel C, Casati N P M, Dunand D C, et al. 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices.[J]. Nature Communications, 2019, 10(1): 1 − 8. doi: 10.1038/s41467-019-08763-4
    杨东青, 王小伟, 黄勇, 等. 熔化极电弧增材制造 18Ni 马氏体钢组织和性能[J]. 焊接学报, 2020, 41(8): 6 − 9. doi: 10.12073/j.hjxb.20200608002

    Yang Dongqing, Wang Xiaowei, Huang Yong, et al. Microstructure and mechanical properties of 18Ni maraging steel deposited by gas metal arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(8): 6 − 9. doi: 10.12073/j.hjxb.20200608002
    高绪杰, 郭娜娜, 朱光明, 等. 激光熔覆制备高熵合金涂层的研究进展[J]. 表面技术, 2019, 48(6): 107 − 117.

    Gao Xujie, Guo Nana, Zhu Guangming, et al. Research progress of high entropy alloy coating prepared by laser cladding[J]. Surface Technology, 2019, 48(6): 107 − 117.
    Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys-science direct[J]. Materials Science and Engineering:A, 2018, 712: 380 − 385. doi: 10.1016/j.msea.2017.12.004
    王磊磊, 刘婷, 段舒尧, 等. 元素分布对FeCoCrNi高熵合金涂层微观组织的影响[J]. 焊接学报, 2021, 42(11): 57 − 64.

    Wang Leilei, Liu Ting, Duan Shuyao, et al. Effect of element distribution on microstructure of fecocrni high entropy alloy coating[J]. Transactions of the China Welding Institution, 2021, 42(11): 57 − 64.
    Wang H W, Xie J L, Chen Y H, et al. Effect of CoCrFeNiMn high entropy alloy interlayer on microstructure and mechanical properties of laser-welded NiTi/304SS joint[J]. Journal of Materials Research and Technology, 2022, 18: 1028 − 1037. doi: 10.1016/j.jmrt.2022.03.022
    黄留飞, 孙耀宁, 季亚奇, 等. 激光熔化沉积 AlCoCrFeNi2.5 高熵合金的组织与力学性能研究[J]. 中国激光, 2021, 48(6): 103 − 110.

    Huang Liufei, Sun Yaoning, Ji Yaqi, et al. Investigation of microstructure and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entroy alloy[J]. Chinese Journal of Lasers, 2021, 48(6): 103 − 110.
    石杰. 3D 打印高熵合金—铁基非晶合金复合材[D]. 武汉: 华中科技大学, 2019.

    Shi Jie. Processing high entropy alloy-Fe-based amorphous alloy composites by 3D-printing[D]. Wuhan: Huazhong University of Science and Technology, 2019.
    Wu Z, David S A, Leonard D N, et al. Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy[J]. Science and Technology of Welding and Joining, 2018, 23(7): 585 − 595. doi: 10.1080/13621718.2018.1430114
    Wu S W, Wang G, Jia Y D, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure[J]. Acta Materialia, 2019, 165: 444 − 458. doi: 10.1016/j.actamat.2018.12.012
    Kim J H, Lim K R, Won J W, et al. Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures[J]. Materials Science and Engineering A, 2018, 712: 108 − 113. doi: 10.1016/j.msea.2017.11.081
    Bridges D, Zhang S, Lang S, et al. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal[J]. Materials Letters, 2018, 215: 11 − 14.
    Dabrowa J, Zajusz M, Kucza W, et al. Demystifying the sluggish diffusion effect in high entropy alloys[J]. Journal of Alloys and Compounds, 2019, 783: 193 − 207. doi: 10.1016/j.jallcom.2018.12.300
    Kottke J, Laurent-Brocq M, Fareed A, et al. Tracer diffusion in the Ni–CoCrFeMn system: Transition from a dilute solid solution to a high entropy alloy[J]. Scripta Materialia, 2019, 159: 94 − 98. doi: 10.1016/j.scriptamat.2018.09.011
    Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887 − 4897. doi: 10.1016/j.actamat.2013.04.058
    丁文, 王小京, 刘宁, 等. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究[J]. 金属学报, 2020, 56(8): 1084 − 1090.

    Ding Wen, Wang Xiaojing, Liu Ning, et al. Diffusion bonding of copper and 304 stainless steel with an interlayer of CoCrFeMnNi high-entropy alloy[J]. Acta Metallurgica Sinica, 2020, 56(8): 1084 − 1090.
    Ding W, Liu N, Fan J, et al. Diffusion bonding of copper to titanium using CoCrFeMnNi high-entropy alloy interlayer[J]. Intermetallics, 2021, 129: 107027. doi: 10.1016/j.intermet.2020.107027
    Sabetghadam H, HanzakiI A Z, Araee A. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer[J]. Materials Characterization, 2010, 61(6): 626 − 634. doi: 10.1016/j.matchar.2010.03.006
    刘玉林. 高熵合金与铝、铜及不锈钢异种材料扩散焊研究[D]. 兰州: 兰州理工大学, 2016.

    Liu Yulin. The study of diffusion welding of high entropy alloy with aluminum, copper and stainless steel[D]. Lanzhou : Lanzhou University of Technology , 2016.
    Shen Y A, Chen S W, Chen H Z, et al. Extremely thin interlayer of multi-element intermetallic compound between Sn-based solders and FeCoNiMn high-entropy alloy[J]. Applied Surface Science, 2021, 558(100): 149945.
    Peng J, Wang M, Sadeghi B, et al. Increasing shear strength of Au-Sn bonded joint through nano-grained interfacial reaction products[J]. Journal of Materials Science, Springer US, 2021, 56(11): 7050 − 7062. doi: 10.1007/s10853-020-05623-1
    Peng J, Liu H, Fu L, et al. Multi-principal-element products enhancing Au-Sn-bonded joints[J]. Journal of Alloys and Compounds, 2021, 852: 157015. doi: 10.1016/j.jallcom.2020.157015
    Tsai M H, Yeh J W, Gan J Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon[J]. Thin Solid Films, 2008, 516(16): 5527 − 5530. doi: 10.1016/j.tsf.2007.07.109
    Qiu X W, Zhang Y P, Liu C G. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings[J]. Journal of Alloys and Compounds, 2014, 585: 282 − 286. doi: 10.1016/j.jallcom.2013.09.083
    Qiu X. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification[J]. Journal of Alloys and Compounds, 2018, 735: 359 − 364. doi: 10.1016/j.jallcom.2017.11.158
    Shang C, Axinte E, Sun J, et al. CoCrFeNi(W1− xMo x) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Materials & Design, 2017, 117: 193 − 202. doi: 10.1016/j.matdes.2016.12.076
    Shu F, Yang B, Dong S, et al. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings[J]. Applied Surface Science, 2018, 450: 538 − 544. doi: 10.1016/j.apsusc.2018.03.128
    Jiang Y Q, Li J, Juan Y F, et al. Evolution in AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding[J]. Journal of Alloys and Compounds, 2019, 775: 1 − 14. doi: 10.1016/j.jallcom.2018.10.091
    Seol J B, Bae J W, LI Z, et al. Boron doped ultrastrong and ductile high-entropy alloys[J]. Acta Materialia, 2018, 151: 366 − 376. doi: 10.1016/j.actamat.2018.04.004
    Kao Y F, Chen T J, Chen S K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al xCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys[J]. Journal of Alloys and Compounds, 2009, 488(1): 57 − 64.
    Liu D, Guo R, Hu Y, et al. Effects of the elemental composition of high-entropy filler metals on the mechanical properties of dissimilar metal joints between stainless steel and low carbon steel[J]. Journal of Materials Research and Technology, 2020, 9(5): 11453 − 11463. doi: 10.1016/j.jmrt.2020.08.028
    Liu D, Guo R, Hu Y, et al. Dissimilar metal joining of 304 stainless steel to SMA490BW steel using the filler metal powders with a high-entropy design[J]. Metals and Materials International, 2020, 26(6): 854 − 866. doi: 10.1007/s12540-019-00400-5
    Liu D, Wang W, Zha X, et al. Effects of groove on the microstructure and mechanical properties of dissimilar steel welded joints by using high-entropy filler metals[J]. Journal of Materials Research and Technology, 2021, 13(4): 173 − 183.
  • Related Articles

    [1]LI Chengwen, JI Haibiao, YAN Zhaohui, LIU Zhihong, MA Jianguo, WANG Rui, WU Jiefeng. Prediction of residual stress and deformation of 316L multi-layer multi-pass welding based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 20-28. DOI: 10.12073/j.hjxb.20230520002
    [2]LUO Liuxiang, XING Yanfeng. CMT spot welding deformation of sheet metal based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 79-83. DOI: 10.12073/j.hjxb.2019400104
    [3]ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13.
    [4]YANG Youwen, TIAN Zongjun, PAN Hu, WANG Dongsheng, SHEN Lida. Geometry quality prediction of Ni-based superalloy coating by laser cladding based on neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 78-82.
    [5]GAO Xiangdong, MO Ling, YOU Deyong, KATAYAMA Seiji. Prediction algorithm of weld seam deviation based on RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 1-4.
    [6]DENG Xin, WANG Chao, WEI Yanhong. Prediction system of mechanical properties of welded joints based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 109-112.
    [7]WEN Jianli, LIU Lijun, LAN Hu. Penetration state recognition of MIG welding based on genetic wavelet neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 41-44.
    [8]DONG Zhibo, WEI Yanhong, Zhan Xiaohong, WEI Yongqiang. Optimization of mechanical properties prediction models of welded joints combined neural network with genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 69-72.
    [9]WANG Min, YANG Lei, WEI Yanhong, WU Lin. ANN prediction models for tensile properties of TIG welded joints of TA15 titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 56-60.
    [10]LEI YU-cheng, ZHANG Cheng, CHENG Xiao-nong, CHEN Xi-zhang. Study in GTAW of fuzzy neural controller based genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 顾苏怡,闵娜,詹恒辉. ZL101/6061铝合金搅拌摩擦焊接头组织及性能研究. 兵器材料科学与工程. 2024(05): 39-44 .
    2. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 .
    3. 李充,田亚林,齐振国,王崴,杨彦龙,王依敬. 6082-T6铝合金无减薄搅拌摩擦焊接头组织与性能. 焊接学报. 2022(06): 102-107+119 . 本站查看
    4. 杨新岐,元惠新,孙转平,闫新中,赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能. 材料工程. 2022(07): 128-138 .
    5. 付文侦,贺地求,王海军,赖瑞林. 静止轴肩搅拌摩擦焊技术研究现状. 热加工工艺. 2022(15): 7-13 .
    6. 张军,王稳,王健,金涛涛,田志鹏. 静轴肩摩擦搅拌焊温度场仿真分析与参数优化. 中国机械工程. 2022(17): 2115-2124 .
    7. 朱志,郑森木,欧晓琴,余超,王向东,宋海滨,唐帅,苏乂南. 2219铝合金机器人静轴肩搅拌摩擦焊工艺研究. 航天制造技术. 2022(05): 25-29 .
    8. 祝宗煌,左立生,李泽阳,左敦稳. 一种搅拌头轴肩临界值的计算方法. 机械制造与自动化. 2021(01): 66-69 .
    9. 贺地求,刘朋,王海军,王东曜,赖瑞林. 2219-T6静轴肩辅助搅拌摩擦焊组织与性能分析. 湖南大学学报(自然科学版). 2021(08): 11-18 .
    10. 宋刚,程继文,刘振夫. 基于“热导拘束+局部变形强化”的铝合金焊轧复合成形方法. 机械工程学报. 2020(08): 85-91 .
    11. 牛海侠,朱松波,张琼,李蕾. A357铝合金的半固态触变压缩力学行为研究. 黄河科技学院学报. 2020(05): 41-46 .
    12. 褚强,郝思洁,Devang Sejani,Vivek Patel,李文亚. 静止轴肩搅拌摩擦焊接研究进展及展望. 电焊机. 2020(09): 44-52 .
    13. 姜月,柴玮,刘家伦,朱浩,王军. 7075铝合金搅拌摩擦焊接头变形行为及等效模型. 热加工工艺. 2019(09): 215-219 .
    14. 孙舒蕾,张会杰,赵晟伟,谢胜楠,吕洋. 搅拌摩擦焊焊缝表面凹陷现象控制方法研究现状. 精密成形工程. 2019(03): 138-143 .
    15. 郝云飞,马建波,毕煌圣,李超,王国庆. 铝合金T形接头静止轴肩搅拌摩擦焊接及组织性能分析. 焊接学报. 2019(07): 48-54+163 . 本站查看
    16. 曾申波,陈高强,张弓,史清宇. T形接头角接静轴肩搅拌摩擦焊三维流动特征. 焊接学报. 2019(12): 1-5+161 . 本站查看
    17. 王瑾,李送斌,张妍,陆艺. 焊接工艺参数对6061-T6铝合金静止轴肩搅拌摩擦焊组织及力学性能的影响. 焊接. 2019(11): 33-38+67 .
    18. 张铁浩,刘雪松,邢艳双. 搅拌摩擦焊修复ZL210铸造铝合金组织与性能分析. 焊接学报. 2018(04): 115-118+134 . 本站查看
    19. 李丰,党鹏飞,刘雪松. 基于不旋转轴肩的铝镁异种材料搅拌摩擦焊. 焊接学报. 2018(05): 55-58+131 . 本站查看
    20. 张华,赵常宇,林三宝,石功奇. 7050-T7451铝合金静轴肩搅拌摩擦焊接头组织与性能研究. 焊接. 2018(09): 5-9+65 .
    21. 李金全,刘会杰. 2219-T6铝合金静止轴肩搅拌摩擦焊接工艺及接头组织性能. 航天制造技术. 2017(06): 1-6+11 .
    22. 王敏,张会杰,张骁,于涛,杨广新. 一种新型零减薄搅拌摩擦焊工艺. 焊接学报. 2016(10): 37-40+131 . 本站查看

    Other cited types(15)

Catalog

    Article views (644) PDF downloads (104) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return