Advanced Search
GUO Lixiang, LI Xiaoping, LIU Xiao, WANG Bin, WANG Zhaungzhuang. Microstructure and corrosion resistance of 7075 aluminum alloy welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 104-112. DOI: 10.12073/j.hjxb.20210811001
Citation: GUO Lixiang, LI Xiaoping, LIU Xiao, WANG Bin, WANG Zhaungzhuang. Microstructure and corrosion resistance of 7075 aluminum alloy welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 104-112. DOI: 10.12073/j.hjxb.20210811001

Microstructure and corrosion resistance of 7075 aluminum alloy welded by TIG

More Information
  • Received Date: August 10, 2021
  • Available Online: March 31, 2022
  • In this paper, the self-developed 7075 aluminum alloy welding wire was used to conduct welding experiments on the 7075 aluminum alloy plate, and the effect of welding current (160-180 A) on the microstructure and corrosion resistance of the weld was studied, and the changes in performance after T6 heat treatment (480 ℃+1 h, 120 ℃+24 h) were observed. The microstructure at the weld is uniform isoaxial crystals, and with the increase of the current, the grain size continues to increase, and the grain boundary narrows after heat treatment, which is obviously seen to be less precipitation; XRD and SEM detection found that the weld is mainly composed of β phase (β-AlCu3), η phase (MgZn2) and a small amount of AlCuMg phase, and at the same time, Al13Fe4 intermetallic compounds and a small amount of Mg2Si were detected; after heat treatment, the solid solution of alloying elements dissolved into the matrix, and no common reinforced phase was precipitated after aging. Only Al13Fe4, Mg2Si and a small amount of Al5Fe3 and SiO2 impurity phases were found. Through heat treatment, the elements are severely segregated before heat treatment to uniform distribution after heat treatment, reducing the self-corrosion potential at the weld; at the same time, the impedance and phase angle are improved, and the best corrosion resistance is the weld under the current 165 A after heat treatment.
  • Kah P, Rajan R, Martikainen J, et al. Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys[J]. International Journal of Mechanical & Materials Engineering, 2015, 10(1): 1 − 10.
    Cical E, Duffet G, Andrzejewski H, et al. Hot cracking in Al–Mg–Si alloy laser welding – operating parameters and their effects[J]. Materials Science & Engineering A, 2005, 395(1-2): 1 − 9.
    Li Xiaoping, Liu Xiao, Li Runzhou, et al. Microstructure and property research on welded joints of 7xxx aluminum alloy welding wire TIG for 7075 aluminum alloy[J]. China Welding, 2021, 30(4): 58 − 64.
    于海洋, 胡志力. DP590钢/7075铝异种金属搅拌摩擦搭接焊界面组织与力学性能研究[J]. 机械工程学报, 2020, 56(6): 65 − 72. doi: 10.3901/JME.2020.06.065

    Yu Haiyang, Hu Zhili. Investigation of interfacial microstructure and mechanical properties for DP590 steel/7075 aluminum dissimilar materials friction stir lap welding joints[J]. Journal of Mechanical Engineering, 2020, 56(6): 65 − 72. doi: 10.3901/JME.2020.06.065
    邱小明. 超声冲击对 7A52 铝合金焊接接头组织及性能的影响[D]. 呼和浩特: 内蒙古工业大学, 2014.

    Qiu Xiaoming. Effect of UIT on microstructure and properties of 7A52 aluminum alloy welded joint[D]. Hohhot: Inner Mongolia University of Technology, 2014.
    刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705 − 1715.

    Liu Bing, Peng Chaoqun, Wang Richu, et al. Research status and prospect of aluminum alloy for large aircraft[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705 − 1715.
    陈芙蓉, 李国伟. 7075铝合金的研究现状[J]. 机械制造文摘(焊接分册), 2019(1): 1 − 7.

    Chen Furong, Li Guowei. Research status of 7075 aluminum alloys[J]. Welding Digest of Machinery Manufacturing, 2019(1): 1 − 7.
    Holzer M, Hofmann K, Mann V, et al. Change of hot cracking susceptibility in welding of high strength aluminum alloy AA 7075[J]. Physics Procedia, 2016, 83: 463 − 471. doi: 10.1016/j.phpro.2016.08.048
    宋友宝, 李龙, 吕金明, 等. 7xxx系铝合金焊接研究现状与展望[J]. 中国有色金属学报, 2018, 28(3): 492 − 501.

    Song Youbao, Li Long, Lü Jinming, et al. Research status and perspective of 7xxx series aluminum alloys welding[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3): 492 − 501.
    吴圣川, 唐涛, 李正. 高强铝合金焊接的研究进展[J]. 现代焊接, 2011(2): 5 − 8.

    Wu Shengchuan, Tang Tao, Li Zheng. Research progress of high strength aluminum alloy welding[J]. Modern Welding, 2011(2): 5 − 8.
    许伟. 7075铝合金激光热丝焊接仿真与工艺研究[D]. 湖南: 湖南科技大学, 2018.

    Xu Wei. Simulation and fabrication research of laser hot wire welding of 7075 aluminum alloy[D]. Hunan: Hunan University of Science and Technology, 2018.
    张琨, 刘政军. 固溶处理对7075铝合金同质TIG焊接头显微组织及力学性能的影响研究[J]. 热加工工艺, 2019, 48(3): 83 − 88.

    Zhang Kun, Liu Zhengjun. Effect of solution treatment on microstructure and mechanical properties of homogeneous TIG welded joint of 7075 aluminum alloy[J]. Hot Working Technology, 2019, 48(3): 83 − 88.
    Oropeza D, Hofmann D C, Williams K, et al. Welding and additive manufacturing with nanoparticle-enhanced aluminum 7075 wire[J]. Journal of Alloys and Compounds, 2020, 834: 154987. doi: 10.1016/j.jallcom.2020.154987
    Sokoluk M, Cao C, Pan S, et al. Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075[J]. Nature Communications, 2019, 10(1): 98. doi: 10.1038/s41467-018-07989-y
    Harrison T J, Crawford B R, Brandt M, et al. Modelling the effects of intergranular corrosion around a fastener hole in 7075-T651 aluminium alloy[J]. Computational Materials Science, 2014, 84: 74 − 82. doi: 10.1016/j.commatsci.2013.11.033
    Davis J R . Corrosion of aluminum and aluminum alloys[M]. USA: ASM International, 1999.
    Lumsden J B, Mahoney M W, Pollock G, et al. Intergranular corrosion following friction stir welding of aluminum alloy 7075-T651[J]. Corrosion, 1999, 55(12): 1127 − 1135. doi: 10.5006/1.3283950
    Paglia C S, Carroll M C, Pitts B C, et al. Strength, corrosion and environmentally assisted cracking of a 7075-T6 friction stir weld[J]. Materials Science Forum, 2002, 396(3): 1677 − 1684.
    Elatharasan G , Kumar V. Corrosion analysis of friction stir-welded AA 7075 aluminium alloy/Korozijska analiza aluminijeve zlitine AA 7075[J]. Joumal of Mehanial Engineerng, 2014, 60(1): 29 − 34.
    Li J F, Peng Z W, Li C X, et al. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 755 − 762. doi: 10.1016/S1003-6326(08)60130-2
    Yan S H, Chen H, Ma C P, et al. Local corrosion behaviour of hybrid laser-MIG welded Al–Zn–Mg alloy joints[J]. Materials & Design, 2015, 88: 1353 − 1365.
    Kumar P V, Reddy G M, Rao K S. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds – Effect of post weld heat treatment[J]. Defence Technology, 2015, 11(4): 362 − 369. doi: 10.1016/j.dt.2015.04.003
    佘欢, 疏达, 储威, 等. Fe和Si杂质元素对7 × × × 系高强航空铝合金组织及性能的影响[J]. 材料工程, 2013(6): 92 − 98. doi: 10.3969/j.issn.1001-4381.2013.06.019

    She Huan, Shu Da, Chu Wei, et al. Effects of Fe and Si impurities on the microstructure and properties of 7xxx high strength aircraft aluminum alloys[J]. Journal of Materials Engineering, 2013(6): 92 − 98. doi: 10.3969/j.issn.1001-4381.2013.06.019
    王利华. 杂质元素含量对7075铝合金组织和性能的影响[J]. 铸造技术, 2014, 35(5): 1029 − 1031.

    Wang Lihua. Effect of impurity element content on structure and properties of 7075 Al alloy[J]. Foundry Technology, 2014, 35(5): 1029 − 1031.
    Zhang C H, Huang G J, Liu Q. Research on local corrosion behavior of thermo-mechanically affected zone in dissimilar AA2024/7075 friction stir welds[J]. Intermetallics, 2021, 130: 107081. doi: 10.1016/j.intermet.2020.107081
    董春林, 董继红, 赵华夏, 等. 6082铝合金双轴肩FSW接头组织及腐蚀性能[J]. 焊接学报, 2012, 33(10): 5 − 9.

    Dong Chunlin, Dong Jihong, Zhao Huaxia, et al. Microstructures and electrochemical performance of 6082-T6 aluminum alloy welds prepared by bobbin friction stir welding[J]. Transactions of the China Welding Institution, 2012, 33(10): 5 − 9.
    徐腾, 张春芝, 鲁宽亮, 等. 7075铝合金MIG焊接头金相组织、力学性能和耐蚀性的应力敏感性[J]. 焊接学报, 2021, 42(7): 51 − 59. doi: 10.12073/j.hjxb.20210212001

    Xu Teng, Zhang Chunzhi, Lu Kuanliang, et al. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint[J]. Transactions of the China Welding Institution, 2021, 42(7): 51 − 59. doi: 10.12073/j.hjxb.20210212001
    Bocchi S, Cabrini M, D'Urso G, et al. The influence of process parameters on mechanical properties and corrosion behavior of friction stir welded aluminum joints[J]. Journal of Manufacturing Processes, 2018, 35: 1 − 15. doi: 10.1016/j.jmapro.2018.07.012
    Sinhmar S, Dwivedi D K, Sunil S, et al. A study on corrosion behavior of friction stir welded and tungsten inert gas welded AA2014 aluminium alloy[J]. Corrosion Science, 2018, 133: 25 − 35. doi: 10.1016/j.corsci.2018.01.012
    Shrivastava V, Singh P, Gupta G K, et al. Synergistic effect of heat treatment and reinforcement content on the microstructure and corrosion behavior of Al-7075 alloy based nanocomposites[J]. Journal of Alloys and Compounds, 2021, 857: 157590. doi: 10.1016/j.jallcom.2020.157590
  • Related Articles

    [1]CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001
    [2]XIAO Jun, GE Xinyu, GAI Shengnan, CHEN Shujun, SHENG Weixing, CHEN Shaojun. Regulation of bead formation in GMAW based on oscillating-laser scanning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 7-12. DOI: 10.12073/j.hjxb.20230423001
    [3]LU Yiting, LU Wei, WANG Bin, MA Xuyi, CHEN Wei. Effect of laser wobble on energy distribution and weld forming of Ti60 alloy laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 95-102. DOI: 10.12073/j.hjxb.20220728001
    [4]PANG Bowen, CUI Jiangmei, ZHOU Naixun, KE Wenchao, CHEN Long, AO Sansan, ZENG Zhi. Effect of power distribution on dynamic behavior of molten pool during laser oscillating welding of 5A06 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 23-30. DOI: 10.12073/j.hjxb.20220404001
    [5]YANG Wen, GENG Shaoning, JIANG Ping, HAN Chu, GU Shiyuan. Process control of the porosity defects in high power oscillating laser welding of medium-thick aluminum alloy plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 26-33. DOI: 10.12073/j.hjxb.20210528001
    [6]CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101.
    [7]LI Ying, FENG Xiaosong, ZHANG Dan, CUI Fan. High power fiber laser welding of lock butt joint of medium 0Cr15Ni5Cu4Nb steel plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 97-100.
    [8]YANG Xiaohong, SONG Yonglun, HU Kunping, XIA Yuan. Characteristic of energy distribution at anode and cathode on AC TIG welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 29-32.
    [9]WANG Wei, WANG XuYou, QI GuoLiang, LEI Zhen, LIN ShangYang, DU Bing. Welding characteristics of laser-low power pulse MIG hybrid welding aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 37-40,61.
    [10]SUN Hao, ZHANG Zhaodong, LIU Liming. Low power laser welding of magnesium alloy with activating flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 49-52.
  • Cited by

    Periodical cited type(2)

    1. 刘海,陈辉. Q345B/304异种钢激光填丝焊接工艺与性能研究. 激光技术. 2024(02): 229-234 .
    2. 于鸿宇,刘智慧,张承瑞,陈赓,高涛. 基于旁轴视觉的激光焊接系统加工定位方法. 焊接学报. 2024(09): 42-49+102 . 本站查看

    Other cited types(0)

Catalog

    Article views (583) PDF downloads (91) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return