Citation: | XU Teng, ZHANG Chunzhi, LU Kuanliang, SHANG Xichang, WANG Ning. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 51-59. DOI: 10.12073/j.hjxb.20210212001 |
丁亚茹, 陈芙蓉, 杨帆, 等. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103 − 2108, 2114. doi: 10.11896/cldb.20070158
Ding Yaru, Chen Furong, Yang Fan, et al. Analyzing the influence of laser welding parameters on the welding quality of 7075 aluminum alloy by response surface methodology[J]. Materials Reports, 2021, 35(2): 2103 − 2108, 2114. doi: 10.11896/cldb.20070158
|
熊斯, 唐鑫, 王春霞, 等. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(8): 2720 − 2724.
Xiong Si, Tang Xin, Wang Chunxia, et al. Effect of post-weld heat treatment on microstructure and mechanical properties of 7075 alloy welded by Al-Mg-Zn (-Sc-Zr) alloy welding wire[J]. Materials Reports, 2019, 33(8): 2720 − 2724.
|
张颖, 林高用, 周英, 等. LC52铝合金抗剥落腐蚀性能研究[J]. 铝加工, 2003(4): 50 − 54. doi: 10.3969/j.issn.1005-4898.2003.04.014
Zhang Ying, Lin Gaoyong, Zhou Ying, et al. Study on exfoliation corrosion resistance property of LC52 aluminum alloy[J]. Aluminum Fabrication, 2003(4): 50 − 54. doi: 10.3969/j.issn.1005-4898.2003.04.014
|
林高用, 张颖, 杨立斌, 等. 时效制度对LC52铝合金组织与性能的影响[J]. 金属热处理, 2004, 29(10): 32 − 35. doi: 10.3969/j.issn.0254-6051.2004.10.012
Lin Gaoyong, Zhang Ying, Yang Libin, et al. Effects of ageing treatment on structure and properties of LC52 aluminum alloy[J]. Heat Treatment of Metals, 2004, 29(10): 32 − 35. doi: 10.3969/j.issn.0254-6051.2004.10.012
|
Kumar P V, Reddy G M, Rao K S. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds–effect of post weld heat treatment[J]. Defence Technology, 2015, 11(4): 362 − 369. doi: 10.1016/j.dt.2015.04.003
|
Holroyd N J H, Scamans G M. Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments[J]. Metallurgical and Materials Transactions A, 2013, 44: 1230 − 1253. doi: 10.1007/s11661-012-1528-3
|
Qi Xing, Jin Jirong, Dai Chunli, et al. A study on the susceptibility to SCC of 7050 aluminum alloy by DCB specimens[J]. Materials, 2016, 9(11): 884. doi: 10.3390/ma9110884
|
周鹏展, 钟掘, 贺地求. LC52厚板搅拌摩擦焊组织性能分析[J]. 材料科学与工程学报, 2006, 24,(3): 429 − 431, 435. doi: 10.3969/j.issn.1673-2812.2006.03.027
Zhou Pengzhan, Zhong Jue, He Diqiu. Microstructure and properties in friction-stir welds of LC52 slab[J]. Journal of Materials Science & Engineering, 2006, 24,(3): 429 − 431, 435. doi: 10.3969/j.issn.1673-2812.2006.03.027
|
郑强, 陈康华, 黄兰萍, 等. 高温预析出和固溶温度对7A52合金应力腐蚀开裂的影响[J]. 金属热处理, 2005, 30(7): 14 − 17. doi: 10.3969/j.issn.0254-6051.2005.07.005
Zheng Qiang, Chen Kanghua, Huang Lanping, et al. Effect of high temperature pre-precipitation and solution temperature on SCC of 7A52 alloy[J]. Heat Treatment of Metals, 2005, 30(7): 14 − 17. doi: 10.3969/j.issn.0254-6051.2005.07.005
|
闫永贵, 马力, 曾红杰, 等. 7A52铝合金的应力腐蚀性能研究[J]. 腐蚀科学与防护技术, 2009, 21(2): 119 − 121. doi: 10.3969/j.issn.1002-6495.2009.02.014
Yan Yonggui, Ma Li, Zeng Hongjie, et al. Stress cracking corrosion of 7A52 aluminum alloy[J]. Corrosion Science and Protection Technology, 2009, 21(2): 119 − 121. doi: 10.3969/j.issn.1002-6495.2009.02.014
|
张华, 郭启龙, 赵常宇, 等. 双级时效对7050-T7451铝合金搅拌摩擦焊组织及应力腐蚀敏感性的影响[J]. 焊接学报, 2020, 41(6): 1 − 5. doi: 10.12073/j.hjxb.20190513001
Zhang Hua, Guo Qilong, Zhao Changyu, et al. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. Transactions of the China Welding Institution, 2020, 41(6): 1 − 5. doi: 10.12073/j.hjxb.20190513001
|
Shen L, Chen H, Che X L, et al. Stress corrosion cracking behavior of laser-MIG hybrid welded 7B05-T5 aluminum alloy[J]. Corrosion Science, 2020, 165: 108417. doi: 10.1016/j.corsci.2019.108417
|
Gou G Q, Chen J, Wang Z R, et al. Stress corrosion cracking behavior of 4.19%Zn-1.34%Mg (A7N01S-T5) aluminum alloy welded joints[J]. Corrosion, 2016, 72(9): 1133 − 1145. doi: 10.5006/2043
|
Marlaud T, Malki B, Henon C, et al. Relationship between alloy composition, microstructure and exfoliation corrosion in Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2011, 53(10): 3139 − 3149. doi: 10.1016/j.corsci.2011.05.057
|
李智, 吕胜利, 李逸飞. 应力水平对2219铝合金腐蚀损伤力学性能的影响[J]. 山东科学, 2019, 32(3): 48 − 56. doi: 10.3976/j.issn.1002-4026.2019.03.008
Li Zhi, Lü Shengli, Li Yifei. Effect of stress level on mechanical properties of 2219 aluminum alloy caused by stress corrosion damage[J]. Shandong Science, 2019, 32(3): 48 − 56. doi: 10.3976/j.issn.1002-4026.2019.03.008
|
李春岭. 7075铝合金应力腐蚀开裂机理研究[D]. 镇江: 江苏科技大学, 2014.
Li Chunling. The study of 7075 aluminum alloy to stress corrosion cracking mechanism[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.
|
Wang Liwei, Liang Jianming, Li Han, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl−[J]. Corrosion Science, 2021, 178: 109076-1-19. doi: 10.1016/j.corsci.2020.109076
|
张春芝, 陈姝, 孟庆旺, 等. 一种在应力耦合作用下进行电化学腐蚀的实验方法: CN106053325 B [P]. 2019-05-21.
Zhang Chunzhi, Chen Shu, Meng Qingwang, et al. An experimental method for electrochemical corrosion under stress coupling: CN106053325 B[P]. 2019-05-21.
|
Dudzik K. Influence of joining method for hardness distribution in joints of AlZn5Mgl alloy[J]. Journal of KONES Powertrain and Transport, 2010, 17(4): 137 − 141.
|
戴军. 稀土镁合金NZ30K激光焊接及接头性能改善研究[D]. 上海: 上海交通大学, 2012.
Dai Jun. Research on laser welded Mg-rare earth alloy NZ30K and improvement of joint properties[D]. Shanghai: Shanghai Jiao Tong University, 2012.
|
Zhang Y M, Pan C, Male A T. Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process[J]. Metallurgical and Materials Transactions A, 2000, 31(10): 2537 − 2543. doi: 10.1007/s11661-000-0198-8
|
王立楠. 7A52铝合金MIG焊接力学性能及腐蚀行为研究[D]. 长春: 长春工业大学, 2017.
Wang Linan. Research of 7A52 aluminum alloy MIG welding mechanical properties and corrosion behavior[D]. Changchun: Changchun University of Technology, 2017.
|
Ares A E, Gueijman S F, Caram R, et al. Analysis of solidification parameters during solidification of lead and aluminum base alloys[J]. Journal of Crystal Green, 2005, 275(1): 319 − 327.
|
易杰. 铝合金双脉冲MIG焊接过程中焊缝组织和性能研究[D]. 长沙: 湖南大学, 2015.
Yi Jie. The study of mechanical property and microstructure evolution of Al alloy weld in double-pulsed MIG welding[D]. Changsha: Hunan University, 2015.
|
黄敏, 刘铭, 张坤, 等. 铝及铝合金焊丝的研究与发展现状[J]. 有色金属加工, 2008, 37(2): 9 − 12. doi: 10.3969/j.issn.1671-6795.2008.02.003
Huang Min, Liu Ming, Zhang Kun, et al. Development of aluminum alloy welding wires[J]. Nonferrous Metals Processing, 2008, 37(2): 9 − 12. doi: 10.3969/j.issn.1671-6795.2008.02.003
|
刘政军, 何偲倬, 苏允海, 等. 焊接材料对7075铝合金焊接性及焊缝组织的影响[J]. 沈阳工业大学学报, 2018, 40(2): 139 − 144. doi: 10.7688/j.issn.1000-1646.2018.02.04
Liu Zhengjun, He Sizhuo, Su Yunhai, et al. Influence of different welding materials on weldability and weld bead microstructure of 7075 aluminum alloy[J]. Journal of Shenyang University of Technology, 2018, 40(2): 139 − 144. doi: 10.7688/j.issn.1000-1646.2018.02.04
|
刘增威. SECM对7075铝合金在NaCl溶液中的电化学腐蚀行为研究[D]. 赣州: 江西理工大学, 2017.
Liu Zengwei. Study on electrochemical corrosion behavior of 7075 aluminum alloy in NaCl solution with SECM[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
|
Paradowska A M, Price J W H, Ibrahim R, et al. The effect of heat input on residual stress distribution of steel welds measured by neutron diffraction[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 17(1−2): 385 − 388.
|
Liu X F, Zhan J, Liu Q J. The influence of tensile stress on electrochemical noise from aluminum alloy in chloride media[J]. Corrosion Science, 2009, 51(6): 1460 − 1466.
|
[1] | WANG Xiaoming, ZHANG Tianlei, ZHANG Zilong, WANG Geng, LIU Jie, DANG Yaoshi, WANG Mingwei. Finite element simulation of bending stress in Al/SiC-SiC interlocking structure brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 120-126. DOI: 10.12073/j.hjxb.20240905001 |
[2] | QIAO Ruilin, LONG Weimin, QIN Jian, LIAO Zhiqian, FAN Xigang, WEI Yongqiang. Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 68-74. DOI: 10.12073/j.hjxb.20230520001 |
[3] | GUO Shaoqing, WU Shibiao, XIONG Huaping, CHEN Bo. Numerical simulation of residual stresses in brazed ring joint between SiO2f/SiO2 composite and Nb metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 67-70. |
[4] | CHEN Shuhai, ZHANG Mingxin, LI Meng, HUANG Jihua. Numerical simulation of fiber laser welding-brazing of Fe/Al dissimilar metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(10): 21-24. |
[5] | LI Yafan, YANG Jianguo, JI Shude, WU Jingwei, FANG Hongyuan. Numerical simulation of shear stress of Al2O3 joint brazed with composite filler materials[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (8): 109-112. |
[6] | ZHANG Lixia, FENG Jicai. Finite element simulation of thermal stress on brazed K24 nickel-based joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 29-32. |
[7] | LI Junmin, CHEN Furong. Numerical simulation of influence of process on stress field of electron beam brazing radiator[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 69-72. |
[8] | YUE Xi-shan, SUN Feng-lian. The numerical simulation of the brazing process of cemented carbide cirque and steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 35-38,43. |
[9] | CAO Jian, FENG Ji-cai, LI Zhuo-ran. Numerical simulation of thermal/residual stresses in brazed Ti/TiAi joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (1): 5-8. |
[10] | LIZhuo ran, CAOJian, FENGJi cai. FEM analysis of thermal/residual stresses in brazing TiB2 cermet/TiAl joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 1-4. |
1. |
严春妍,顾正家,聂榕圻,张可召,吴晨,王宝森. X80管线钢水下湿法多道焊残余应力分析. 焊接学报. 2024(03): 15-21+130 .
![]() | |
2. |
李志刚,魏成法,刘德俊,杨翔. 高压水下湿法焊接电弧等离子体介质击穿机制. 焊接学报. 2023(08): 49-56+132 .
![]() |