Advanced Search
XU Teng, ZHANG Chunzhi, LU Kuanliang, SHANG Xichang, WANG Ning. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 51-59. DOI: 10.12073/j.hjxb.20210212001
Citation: XU Teng, ZHANG Chunzhi, LU Kuanliang, SHANG Xichang, WANG Ning. Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 51-59. DOI: 10.12073/j.hjxb.20210212001

Microstructure, mechanical properties and stress dependence of corrosion resistance for MIG welded 7075 aluminum joint

More Information
  • Received Date: February 11, 2021
  • Available Online: August 30, 2021
  • As a competitive high-strength and high-hardness aluminum alloy in field of aerospace and rail transit, 7 series aluminum alloy and its welding performance have attracted attention. The microstructure and mechanical properties of single-side and double-side welded 7075 aluminum alloy joints were studied, and the corrosion resistance of the joints under different stresses in 3.5% NaCl solution was compared and analyzed. The result shows that, double-side MIG welding of 7075 aluminum alloy brings about more uniform microstructure and finer grain, but equivalent mechanical properties with the fracture at the weld in comparison with single-side MIG welding. The corrosion resistance of the near-weld zone for both single-side and double-side welding is higher than that of the weld and far away from the weld. In addition, double-side welding improves the corrosion resistance of the joint. Under the action of the applied stress, the steady-state passivation and activation processes of the specimen are destroyed, which results in the multiple anodic polarization actions in the process of potentiodynamic polarization. The corrosion process is thus affected by the coupling effects of stress, corrosion potential and other factors.
  • 丁亚茹, 陈芙蓉, 杨帆, 等. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103 − 2108, 2114. doi: 10.11896/cldb.20070158

    Ding Yaru, Chen Furong, Yang Fan, et al. Analyzing the influence of laser welding parameters on the welding quality of 7075 aluminum alloy by response surface methodology[J]. Materials Reports, 2021, 35(2): 2103 − 2108, 2114. doi: 10.11896/cldb.20070158
    熊斯, 唐鑫, 王春霞, 等. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(8): 2720 − 2724.

    Xiong Si, Tang Xin, Wang Chunxia, et al. Effect of post-weld heat treatment on microstructure and mechanical properties of 7075 alloy welded by Al-Mg-Zn (-Sc-Zr) alloy welding wire[J]. Materials Reports, 2019, 33(8): 2720 − 2724.
    张颖, 林高用, 周英, 等. LC52铝合金抗剥落腐蚀性能研究[J]. 铝加工, 2003(4): 50 − 54. doi: 10.3969/j.issn.1005-4898.2003.04.014

    Zhang Ying, Lin Gaoyong, Zhou Ying, et al. Study on exfoliation corrosion resistance property of LC52 aluminum alloy[J]. Aluminum Fabrication, 2003(4): 50 − 54. doi: 10.3969/j.issn.1005-4898.2003.04.014
    林高用, 张颖, 杨立斌, 等. 时效制度对LC52铝合金组织与性能的影响[J]. 金属热处理, 2004, 29(10): 32 − 35. doi: 10.3969/j.issn.0254-6051.2004.10.012

    Lin Gaoyong, Zhang Ying, Yang Libin, et al. Effects of ageing treatment on structure and properties of LC52 aluminum alloy[J]. Heat Treatment of Metals, 2004, 29(10): 32 − 35. doi: 10.3969/j.issn.0254-6051.2004.10.012
    Kumar P V, Reddy G M, Rao K S. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds–effect of post weld heat treatment[J]. Defence Technology, 2015, 11(4): 362 − 369. doi: 10.1016/j.dt.2015.04.003
    Holroyd N J H, Scamans G M. Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments[J]. Metallurgical and Materials Transactions A, 2013, 44: 1230 − 1253. doi: 10.1007/s11661-012-1528-3
    Qi Xing, Jin Jirong, Dai Chunli, et al. A study on the susceptibility to SCC of 7050 aluminum alloy by DCB specimens[J]. Materials, 2016, 9(11): 884. doi: 10.3390/ma9110884
    周鹏展, 钟掘, 贺地求. LC52厚板搅拌摩擦焊组织性能分析[J]. 材料科学与工程学报, 2006, 24,(3): 429 − 431, 435. doi: 10.3969/j.issn.1673-2812.2006.03.027

    Zhou Pengzhan, Zhong Jue, He Diqiu. Microstructure and properties in friction-stir welds of LC52 slab[J]. Journal of Materials Science & Engineering, 2006, 24,(3): 429 − 431, 435. doi: 10.3969/j.issn.1673-2812.2006.03.027
    郑强, 陈康华, 黄兰萍, 等. 高温预析出和固溶温度对7A52合金应力腐蚀开裂的影响[J]. 金属热处理, 2005, 30(7): 14 − 17. doi: 10.3969/j.issn.0254-6051.2005.07.005

    Zheng Qiang, Chen Kanghua, Huang Lanping, et al. Effect of high temperature pre-precipitation and solution temperature on SCC of 7A52 alloy[J]. Heat Treatment of Metals, 2005, 30(7): 14 − 17. doi: 10.3969/j.issn.0254-6051.2005.07.005
    闫永贵, 马力, 曾红杰, 等. 7A52铝合金的应力腐蚀性能研究[J]. 腐蚀科学与防护技术, 2009, 21(2): 119 − 121. doi: 10.3969/j.issn.1002-6495.2009.02.014

    Yan Yonggui, Ma Li, Zeng Hongjie, et al. Stress cracking corrosion of 7A52 aluminum alloy[J]. Corrosion Science and Protection Technology, 2009, 21(2): 119 − 121. doi: 10.3969/j.issn.1002-6495.2009.02.014
    张华, 郭启龙, 赵常宇, 等. 双级时效对7050-T7451铝合金搅拌摩擦焊组织及应力腐蚀敏感性的影响[J]. 焊接学报, 2020, 41(6): 1 − 5. doi: 10.12073/j.hjxb.20190513001

    Zhang Hua, Guo Qilong, Zhao Changyu, et al. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. Transactions of the China Welding Institution, 2020, 41(6): 1 − 5. doi: 10.12073/j.hjxb.20190513001
    Shen L, Chen H, Che X L, et al. Stress corrosion cracking behavior of laser-MIG hybrid welded 7B05-T5 aluminum alloy[J]. Corrosion Science, 2020, 165: 108417. doi: 10.1016/j.corsci.2019.108417
    Gou G Q, Chen J, Wang Z R, et al. Stress corrosion cracking behavior of 4.19%Zn-1.34%Mg (A7N01S-T5) aluminum alloy welded joints[J]. Corrosion, 2016, 72(9): 1133 − 1145. doi: 10.5006/2043
    Marlaud T, Malki B, Henon C, et al. Relationship between alloy composition, microstructure and exfoliation corrosion in Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2011, 53(10): 3139 − 3149. doi: 10.1016/j.corsci.2011.05.057
    李智, 吕胜利, 李逸飞. 应力水平对2219铝合金腐蚀损伤力学性能的影响[J]. 山东科学, 2019, 32(3): 48 − 56. doi: 10.3976/j.issn.1002-4026.2019.03.008

    Li Zhi, Lü Shengli, Li Yifei. Effect of stress level on mechanical properties of 2219 aluminum alloy caused by stress corrosion damage[J]. Shandong Science, 2019, 32(3): 48 − 56. doi: 10.3976/j.issn.1002-4026.2019.03.008
    李春岭. 7075铝合金应力腐蚀开裂机理研究[D]. 镇江: 江苏科技大学, 2014.

    Li Chunling. The study of 7075 aluminum alloy to stress corrosion cracking mechanism[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.
    Wang Liwei, Liang Jianming, Li Han, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl[J]. Corrosion Science, 2021, 178: 109076-1-19. doi: 10.1016/j.corsci.2020.109076
    张春芝, 陈姝, 孟庆旺, 等. 一种在应力耦合作用下进行电化学腐蚀的实验方法: CN106053325 B [P]. 2019-05-21.

    Zhang Chunzhi, Chen Shu, Meng Qingwang, et al. An experimental method for electrochemical corrosion under stress coupling: CN106053325 B[P]. 2019-05-21.
    Dudzik K. Influence of joining method for hardness distribution in joints of AlZn5Mgl alloy[J]. Journal of KONES Powertrain and Transport, 2010, 17(4): 137 − 141.
    戴军. 稀土镁合金NZ30K激光焊接及接头性能改善研究[D]. 上海: 上海交通大学, 2012.

    Dai Jun. Research on laser welded Mg-rare earth alloy NZ30K and improvement of joint properties[D]. Shanghai: Shanghai Jiao Tong University, 2012.
    Zhang Y M, Pan C, Male A T. Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process[J]. Metallurgical and Materials Transactions A, 2000, 31(10): 2537 − 2543. doi: 10.1007/s11661-000-0198-8
    王立楠. 7A52铝合金MIG焊接力学性能及腐蚀行为研究[D]. 长春: 长春工业大学, 2017.

    Wang Linan. Research of 7A52 aluminum alloy MIG welding mechanical properties and corrosion behavior[D]. Changchun: Changchun University of Technology, 2017.
    Ares A E, Gueijman S F, Caram R, et al. Analysis of solidification parameters during solidification of lead and aluminum base alloys[J]. Journal of Crystal Green, 2005, 275(1): 319 − 327.
    易杰. 铝合金双脉冲MIG焊接过程中焊缝组织和性能研究[D]. 长沙: 湖南大学, 2015.

    Yi Jie. The study of mechanical property and microstructure evolution of Al alloy weld in double-pulsed MIG welding[D]. Changsha: Hunan University, 2015.
    黄敏, 刘铭, 张坤, 等. 铝及铝合金焊丝的研究与发展现状[J]. 有色金属加工, 2008, 37(2): 9 − 12. doi: 10.3969/j.issn.1671-6795.2008.02.003

    Huang Min, Liu Ming, Zhang Kun, et al. Development of aluminum alloy welding wires[J]. Nonferrous Metals Processing, 2008, 37(2): 9 − 12. doi: 10.3969/j.issn.1671-6795.2008.02.003
    刘政军, 何偲倬, 苏允海, 等. 焊接材料对7075铝合金焊接性及焊缝组织的影响[J]. 沈阳工业大学学报, 2018, 40(2): 139 − 144. doi: 10.7688/j.issn.1000-1646.2018.02.04

    Liu Zhengjun, He Sizhuo, Su Yunhai, et al. Influence of different welding materials on weldability and weld bead microstructure of 7075 aluminum alloy[J]. Journal of Shenyang University of Technology, 2018, 40(2): 139 − 144. doi: 10.7688/j.issn.1000-1646.2018.02.04
    刘增威. SECM对7075铝合金在NaCl溶液中的电化学腐蚀行为研究[D]. 赣州: 江西理工大学, 2017.

    Liu Zengwei. Study on electrochemical corrosion behavior of 7075 aluminum alloy in NaCl solution with SECM[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
    Paradowska A M, Price J W H, Ibrahim R, et al. The effect of heat input on residual stress distribution of steel welds measured by neutron diffraction[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 17(1−2): 385 − 388.
    Liu X F, Zhan J, Liu Q J. The influence of tensile stress on electrochemical noise from aluminum alloy in chloride media[J]. Corrosion Science, 2009, 51(6): 1460 − 1466.
  • Related Articles

    [1]GUO Lixiang, LI Xiaoping, LIU Xiao, WANG Bin, WANG Zhaungzhuang. Microstructure and corrosion resistance of 7075 aluminum alloy welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 104-112. DOI: 10.12073/j.hjxb.20210811001
    [2]ZHANG Chengzhu, CHEN Hui, CAI Chuang, YANG Xiaoyi, CHEN Yong. Effect of laser cleaning on surface stress and corrosion of SMA490BW steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 89-96. DOI: 10.12073/j.hjxb.20200618001
    [3]ZHANG Hua, GUO Qilong, ZHAO Changyu, LIN Sanbao, SHI Gongqi. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 1-5. DOI: 10.12073/j.hjxb.20190513001
    [4]FANG Weiping, XIAO Tie, ZHANG Yupeng, Xu Wanghui, YI Yaoyong. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 121-128. DOI: 10.12073/j.hjxb.2019400324
    [5]ZHANG Hua<sup>1</sup>, CUI Bing<sup>1</sup>, LIN Sanbao<sup>2</sup>, SHI Gongqi<sup>3</sup>. Corrosion behavior of friction stir welded joints of 7050 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 71-74. DOI: 10.12073/j.hjxb.2018390178
    [6]ZHANG Hua, ZHANG He, SUN Datong, MA Fangfang. Stress corrosion cracking susceptibility of 2219 aluminium alloy parent metal and its friction stir weldment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 7-10.
    [7]ZHAO Junjun, LI Qi, CAI Zhihai, ZHANG Ping. Effects of secondary phases on stress corrosion property of friction stir welded seam of 7A52 aluminum alloy under different strain rates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (8): 63-66.
    [8]XU Lianyong, JING Hongyang, CAO Jun, LI Chunguo, SUN Youhui. H2S stress corrosion invertigation of pipeline steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 12-16.
    [9]WANG Zhi-ping, WANG Ji-xiao, JI Zhao-hui, LI Na. Surface nanocrystallization of 0Cr18Ni9Ti steel welded joints and its stress corrosing resistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 5-8.
    [10]FENG Yao-rong, LI Tie-hu, LI Guo-xing, HUO Chun-yong, YAN Feng. Corrosion Behavior of Spiral Welded X60 Pipes in Wet H2S Environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 77-80.
  • Cited by

    Periodical cited type(10)

    1. 刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
    2. 税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
    3. 刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
    4. 代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 . 本站查看
    5. 王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
    6. 甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
    7. 陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
    8. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    9. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    10. 张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 . 本站查看

    Other cited types(7)

Catalog

    Article views (581) PDF downloads (60) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return