Advanced Search
HUANG Lingming, WANG Wanjing, WANG Jichao, LIU Songlin, LEI Mingzhun, LUO Guangnan. HIP diffusion bonding of reduced activation steel double wall tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 92-97. DOI: 10.12073/j.hjxb.20210810001
Citation: HUANG Lingming, WANG Wanjing, WANG Jichao, LIU Songlin, LEI Mingzhun, LUO Guangnan. HIP diffusion bonding of reduced activation steel double wall tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 92-97. DOI: 10.12073/j.hjxb.20210810001

HIP diffusion bonding of reduced activation steel double wall tube

More Information
  • Received Date: August 09, 2021
  • Accepted Date: February 17, 2022
  • Available Online: February 18, 2022
  • The double-wall tube can control the crack propagation path and prevent the crack from spreading along the tube diameter, which significantly improves the safety of the tube. Therefore, it is the ideal choice for the cooling tube in the breeding blanket zone of fusion reactor. The process optimization experiments of steel/copper/steel and steel/nickel/steel flat composite structures were carried out to solve the problem of double-wall tube. The results show that grain boundary diffusion occurs at steel/copper/steel composite interface when the hot isostatic pressing temperature is higher than 1 100 ℃. The room temperature tensile strength of the welded joint reaches 601 MPa and the interface nanoindentation hardness is 1.37 GPa. Wider solid solution diffusion of elements occurs at the steel/nickel/steel composite interface, the tensile strength at room temperature can reach 630 MPa, and the nanoindentation hardness at the interface is 2.05 GPa. Prototypes of multi-bending double-wall cooling pipes with good connection quality were achieved by using optimized hot isostatic pressing parameters.
  • Lei Mingzhun, Wu Qigang, Xu Shuling, et al. Design and analysis of the equatorial inboard WCCB blanket module for CFETR[J]. Fusion Engineering and Design, 2020, 161: 111889. doi: 10.1016/j.fusengdes.2020.111889
    Wang Wanjing, Wang Jichao, Xie Chunyi, et al. Progress of manufacture technology of CFETR WCCB blanket at ASIPP[J]. Fusion Engineering and Design, 2020, 159: 11758.
    Liu S, Peng C, Lu P, et al. Progress on design and related R&D activities for the water-cooled breeder blanket for CFETR[J]. Theoretical and Applied Mechanics Letters, 2019, 9(3): 161 − 172. doi: 10.1016/j.taml.2019.03.001
    Magielsen A J, Bakker K, Chabrol C, et al. In-pile performance of a double-walled tube and a tritium permeation barrier[J]. Journal of Nuclear Materials, 2002, 307(1): 832 − 836.
    Forest Laurent, Aktaa J, Boccaccini L V, et al. Status of the EU DEMO breeding blanket manufacturing R&D activities[J]. Fusion Engineering and Design, 2020, 152: 11420.
    顾康家. CLAM钢TIG焊组织与性能的研究[D]. 镇江: 江苏大学, 2009.

    Gu Kangjia. Microstructure and mechanical properties of CLAM steel in TIG welding[D]. Zhenjiang: Jiangsu University, 2009.
    邵奇栋. 中国低活化马氏体钢TIG焊微观组织与力学性能的研究[D]. 镇江: 江苏大学, 2010.

    Shao Qidong. Microstructure and mechanical properties of TIG welded joint of CLAM steel[D]. Zhenjiang: Jiangsu University, 2010.
    Commin L, Rieth M, Widak, V, et al. Characterization of ODS Eurofer/Eurofer dissimilar electron beam welds[J]. Journal of Nuclear Materials, 2013, 442(1-3): 552 − 556. doi: 10.1016/j.jnucmat.2012.11.019
    陈路, 王泽明, 陶海燕, 等. CLF-1低活化铁素体/马氏体钢真空电子束焊接研究[J]. 焊接技术, 2014, 43(5): 26 − 29.

    Chen Lu, Wang Zeming, Tao Haiyan, et al. Reserach on electron beam welding for CLF-1 reduced activation ferritic/martensitic steel[J]. Welding Technology, 2014, 43(5): 26 − 29.
    王纪超. 热等静压法制备CFETR包层第一壁钨/钢模块研究[D]. 合肥: 中国科学技术大学, 2017.

    Wang Jichao. Manufacturing of CFETR blanket first wall W/steel mockup using hot isostatic pressing[D]. Hefei: University of Science and Technology of China, 2017.
    Wang Jichao, Wang Wanjing, Wei Ran, et al. Effect of Ti interlayer on the bonding quality of W and steel HIP joint[J]. Journal of Nuclear Materials, 2016, 485: 8 − 14.
    Widodo Widjaja, Basuki, Jarir Aktaa, et al. Process optimization for diffusion bonding of tungsten with EUROFER97 using a vanadium interlayer[J]. Journal of Nuclear Materials, 2015, 459: 217 − 224. doi: 10.1016/j.jnucmat.2015.01.033
    高庆然, 王纪超, 王万景, 等. 中国聚变工程实验堆水冷包层钢构件流道成形控制研究[J]. 核聚变与等离子体物理, 2020, 40(2): 155 − 161.

    Gao Qinran, Wang Jichao, Wang Wanjing, et al. Study on the cooling channel dimension control in the manufacture of CFETR WCCB blanket[J]. Nuclear Fusion and Plasma Physics, 2020, 40(2): 155 − 161.
    Chen S, Huang J, Lu Q, et al. Microstructures and mechanical properties of laser welding joint of a CLAM steel with revised chemical compositions[J]. Journal of Materials Engineering & Performance, 2016, 25(5): 1848 − 1855.
    Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2016, 478: 1 − 6. doi: 10.1016/j.jnucmat.2016.05.028
    吴世凯, 张建超, 廖洪彬, 等. 聚变堆低活化铁素体/马氏体(RAFM)钢焊接研究进展[J]. 机械工程学报, 2019, 55(2): 209 − 217.

    Wu Shikai, Zhang Jianchao, Liao Hongbin, et al. Review on welding technology of RAFM steel[J]. Journal of Mechanical Engineering, 2019, 55(2): 209 − 217.
    Hirose T, Shiba K, Sawai T, et al. Effects of heat treatment process for blanket fabrication on mechanical properties of F82H[J]. Journal of Nuclear Materials, 2004, 329: 324 − 327.
    Gamsjager E, Svoboda J, Fischer F D, et al. Austenite-to-ferrite phase transformation in low-alloyed steels[J]. Computational Materials Science, 2005, 32(3-4): 360 − 369. doi: 10.1016/j.commatsci.2004.09.031
    解庆, 李京龙, 张赋升, 等. 铜-钢扩散焊接头钢侧晶间渗透现象的探讨[J]. 焊接, 2011(2): 28 − 31. doi: 10.3969/j.issn.1001-1382.2011.02.006

    Xie Qing, Li Jinglong, Zhang Fusheng, et al. Discussion on the intergranular infiltration phenomenon of copper-steel diffusion welding joint[J]. Welding & Joining, 2011(2): 28 − 31. doi: 10.3969/j.issn.1001-1382.2011.02.006
    高岩. 高Cr铁素体/马氏体钢的固相连接接头组织形成规律研究[D]. 天津: 天津大学, 2018.

    Gao Yan. Study on microstructure formation rules of solid-state welding joint of 9Cr ferritic/martensitic steel[D]. Tianjin: Tianjin University, 2018.
  • Related Articles

    [1]LIU Deyi, CAI Jianwei, REN Ruiming. Microstructure and properties of diffusion bonded interface of titanium-copper interlayer-carbon steel composite tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 49-52.
    [2]CHEN Jian, LIU Xuepiao, LIANG Huan, CUI Ting, FANG Kai. Bonding properties of plasma sprayed Cr3C2-NiCr and NiAl/Cr3C2-NiCr coatings on CuCrZr alloy surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 13-16.
    [3]WANG Jiajie, ZHANG Ying, MO Shuhua, WANG Guoxing, LI Xianshuang. Microstructures and adhesive strength of functionally gradient coating on crucible substrate sprayed by HVOF[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 33-36.
    [4]LIU Shi-cheng, CHEN Ru-shu, LIU De-yi. Transient liquid phase diffusion bonding of Cu-Ni alloy mild steel composite pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 21-24.
    [5]WANG Fu-liang, LI Jun-hui, HAN Lei, ZHONG Jue. Effect of bonding time on thick aluminum wire wedge bonding strength[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 47-51.
    [6]QIU Chang-jun, ZHOU Wei, HE Bin, FAN Xiang-fang. Study and finite element method analysis for bond strength of high-strength coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (4): 105-107.
    [7]LONG Zhi-li, HAN lei, WU Yun-xin, ZHOU Hong-quan. Effect of different temperature on strength of thermosonic bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (8): 23-26,38.
    [8]ZOU Jia-sheng, XU Zhi-rong, ZHAO Qi-zhang, CHEN Zheng. Bonding strength of double partial transient liquid phase bonding with Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 41-44.
    [9]Liu Huijie, Feng Jicai, Qian Yiyu. Interface Structures and Bonding Strength of SiC/TiAl Joints in Diffusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 170-174.
    [10]Feng Jicai, Liu Huijie, Han Shengyang, Li Zhuoran, Zhang Jiuhai. Interface Structures and Bonding Strength of SiC/Nb/SiC Diffusion Bonded Joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (2): 20-23.
  • Cited by

    Periodical cited type(9)

    1. 夏忠虎,张友昭,任延杰,李相伟,张书彦. 一种新型增材制造FeCoNi中熵合金的时效硬化行为. 焊接. 2024(02): 36-42 .
    2. 田宪华,杨晓东,刘亚,王磊. 激光熔覆涂层材料的研究现状. 热加工工艺. 2024(06): 1-5+9 .
    3. 张欣,蒋淑英,杨昊炎,张恒玮,胡伟伟. CoCrMnNiMo_x高熵合金涂层的组织和耐磨耐蚀性研究. 材料保护. 2023(06): 106-114+122 .
    4. 卢煜,李春燕,田霖,翟建树,寇生中. 高熵合金的性能研究进展. 稀有金属. 2022(10): 1352-1364 .
    5. 鲁铭洋,张欣,蒋淑英,冯涛,王彦芳. 激光熔覆CoCrFeMnNiMo_x高熵合金的组织和耐蚀性研究. 精密成形工程. 2022(12): 50-57 .
    6. 冯伟,邹力维,韩宇,陈波,徐锴. 堆焊工艺对镍基276带极堆焊晶间腐蚀的影响规律. 压力容器. 2021(03): 25-30 .
    7. 李晓鹏,周龙,贺涛江,程锌谋,王庆梅,张英哲. 氩弧焊接方法制备FeCoNiCrAl高熵合金焊接接头的组织和力学性能研究. 贵州农机化. 2021(04): 27-30 .
    8. 黄晋培,章奇,李忠文,于治水. T10钢表面FeMoCoNiCrTi_x高熵合金熔覆层组织及性能. 有色金属科学与工程. 2020(03): 39-43+120 .
    9. 郝文俊,孙荣禄,牛伟,谭金花,李小龙. 合金元素影响高熵合金涂层组织及力学性能综述. 材料导报. 2020(S2): 1330-1333 .

    Other cited types(10)

Catalog

    Article views (279) PDF downloads (83) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return