Advanced Search
ZHANG Mingxuan, MA Zhipeng, YU Haiyang, XIA Fafeng, WANG Desheng. Research on acoustic spreading of liquid Ga on the surface of quartz glass[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 67-72. DOI: 10.12073/j.hjxb.20210608002
Citation: ZHANG Mingxuan, MA Zhipeng, YU Haiyang, XIA Fafeng, WANG Desheng. Research on acoustic spreading of liquid Ga on the surface of quartz glass[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 67-72. DOI: 10.12073/j.hjxb.20210608002

Research on acoustic spreading of liquid Ga on the surface of quartz glass

More Information
  • Received Date: June 07, 2021
  • Available Online: January 26, 2022
  • This paper draws on the spreading behavior of liquid Ga on the surface of quartz glass when the ultrasonic horn acts on the surface of liquid Ga. The flow process and pressure change of liquid Ga was performed and analysis using Comsol Multiphysics software. The results show that the liquid Ga spreads slowly in the initial stage of the spreading process, and the spreading area of liquid Ga is 2.754 cm2 at 24 ms. The spreading area of liquid Ga increases to 5.459 cm2 at 72 ms over a short period of time. It reached an equilibrium state at 84 ms with a spreading area of 5.508 cm2. Obvious cavitation bubbles and ripples could be observed on the surface of liquid Ga during the spreading process. The internal pressure of liquid Ga changes in one cycle after ultrasound was applied. The top of liquid Ga is dominated by negative pressure, and the pressure increased to positive pressure along the radius to the center of the circle. The internal pressure of liquid Ga is dominating by positive pressure at 1.7 ms. The pressure amplitude at the surface of liquid Ga gradually decreases from top to bottom under the action of ultrasonic waves. Meanwhile, liquid Ga spreads under the combined action of internal pressure offset, Laplace pressure difference and “collapse effect”, final morphology changes significantly.
  • Lin Bin, Li Shipeng, Cao Zhongchen, et al. Theoretical modeling and experimental analysis of single-grain scratching mechanism of fused quartz glass[J]. Journal of Materials Processing Technology, 2021, 293: 117090. doi: 10.1016/j.jmatprotec.2021.117090
    李晓鹏, 张泽宇, 王伟, 等. 基于飞秒激光表面修饰的石英玻璃 润湿性分析[J]. 焊接学报, 2020, 41(11): 18 − 24.

    Li Xiaopeng, Zhang Zeyu, Wang Wei, et al. Analysis on the wettability of fused silica glass surface modified by femtosecond Laser[J]. Transactions of the China Welding Institution, 2020, 41(11): 18 − 24.
    Li Yuxiang, Chen Chen, Yi Ruixiang. Recent development of ultrasonic brazing[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 27 − 62. doi: 10.1007/s00170-021-06885-y
    Wu Yongchao, Li Hong, Qu Wenqing, et al. Ultrasonic-assisted bonding of Al2O3 ceramic, Cu, and 5056 aluminum alloy with Sn-Zn-Sb solders[J]. Welding in the World, 2020, 64(2): 247 − 256. doi: 10.1007/s40194-019-00815-z
    赵恺, 张柯柯. 超声波振动对Sn2.5Ag0.7Cu0.1RE/Cu润湿性的 影响[J]. 电焊机, 2013, 43(4): 27 − 30.

    Zhao Kai, Zhang Keke. Effect of ultrasonic vibration on Sn2.5Ag0.7Cu0.1RE/Cu wettability[J]. Electric Welding Machine, 2013, 43(4): 27 − 30.
    赵恺, 张柯柯. 电场对超声振动辅助Sn2.5Ag0.7Cu0.1RE/Cu 润 湿适配性的影响[J]. 焊接技术, 2013, 42(10): 7 − 9.

    Zhao Kai, Zhang Keke. Effect of electric field on Sn2.5Ag0.7Cu0.1RE/Cu wettability with ultrasonic vibration assisted[J]. Welding Technology, 2013, 42(10): 7 − 9.
    闫久春, 孙小磊. 超声波振动辅助钎焊技术[J]. 焊接, 2009(3): 6 − 13.

    Yan Jiuchun, Sun Xiaolei. Ultrasonic vibration assisted brazing technology[J]. Welding & Joining, 2009(3): 6 − 13.
    Deepu P, Saptarshi Basu, Abhishek Saha, et al. Spreading and atomization of droplets on a vibrating surface in a standing pressure field[J]. Applied Physics Letters, 2012, 101(14): 1 − 5. doi: 10.1063/1.4757567
    孙小磊. 玻璃连接的研究现状[J]. 焊接技术, 2015, 44(11): 1 − 4.

    Sun Xiaolei. Research status of soldering glass[J]. Welding Technology, 2015, 44(11): 1 − 4.
    孟庆森, 俞萍, 张丽娜, 等. 金属与硼硅玻璃场致扩散连接形成机理[J]. 焊接学报, 2001, 22(4): 63 − 65.

    Meng Qingsen, Yu Ping, Zhang Lina, et al. Joining mechanism of field-assisted diffusion bonding of borosilicate glass to metals[J]. Transactions of the China Welding Institution, 2001, 22(4): 63 − 65.
    柯胜男, 侯斌, 刘锦卉, 等. 赤泥硫酸熟化浸出液中镓的萃取试验[J]. 科学技术与工程, 2016, 16(26): 203 − 206.

    Ke Shengnan, Hou Bin, Liu Jinhui, et al. Experimental study on the extraction of gallium from red mud by sulfuric acid curing[J]. Science Technology and Engineering, 2016, 16(26): 203 − 206.
    Trindade L B, Nadalon J, Vilela A, et al. Numerical modeling of inclusion removal in electromagnetic stirred steel billets[J]. Steel Research International, 2009, 78(9): 708 − 713.
    Zhang J, Ma W. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation[J]. Journal of Fluid Mechanics, 2020, 892(A5): 1 − 18.
    Etiner A, Evren B, Budakli M, et al. Spreading behavior of droplets impacting over substrates with varying surface topographies[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 606: 1 − 16.
    Guo X, Chen C, Kang R, et al. Study of mechanical properties and subsurface damage of quartz glass at high temperature based on MD simulation[J]. Journal of Micromechanics and Molecular Physics, 2019, 4(2): 1 − 14.
    Ba J K, Zhang Y, Wang X, et al. Effects of deposition time on the structure and properties of AZO thin films deposited on quartz glass by magnetron sputtering[J]. Key Engineering Materials, 2019, 807: 63 − 67. doi: 10.4028/www.scientific.net/KEM.807.63
    Wang F, Schiller U D. Hysteresis in spreading and retraction of liquid droplets on parallel fiber rails[J]. Soft Matter, 2021, 17(22): 5486 − 5498. doi: 10.1039/D1SM00126D
    Shiomoto S, Higuchi H, K Yamaguchi, et al. Spreading dynamics of a precursor film of ionic liquid or water on a micropatterned polyelectrolyte brush surface[J]. Langmuir, 2021, 37(10): 3049 − 3056. doi: 10.1021/acs.langmuir.0c03260
    Hu G, Zhou Q, Bhatlawande A, et al. Patterned nickel interlayers for enhanced silver wetting, spreading and adhesion on ceramic substrates[J]. Scripta Materialia, 2021, 196(1): 1 − 6.
    Valenza F, Sitzia S, Cacciamani G, et al. Wetting and interfacial reactivity of Ni-Al alloys with Al2O3 and ZrO2 ceramics[J]. Journal of Materials Science, 2021, 56: 7849 − 7861. doi: 10.1007/s10853-021-05769-6
  • Related Articles

    [1]LE Jian, ZHANG Hua, ZHANG Qiqi, WU Jinhao. Overhead weld tracking by robots based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 56-60.
    [2]YIN Ziqiang, ZHANG Guangjun, ZHAO Huihui, YUAN Xin, WU Lin. Design of human-machine interactive robotic arc welding remanufacturing system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 69-72.
    [3]SHEN Junqi, HU Shengsun, FENG Shengqiang, GAO Zhonglin. Bead geometry prediction based on SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 103-106.
    [4]ZHOU Lü, CHEN Shan-ben, LIN Tao, CHEN Wen-jie. Autonomous seam tracking based on local vision in arc robotic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 49-52.
    [5]YU Xiu-ping, SUN Hua, ZHAO Xi-ren, Alexandre Gavrilov. Weld width prediction based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 17-19,45.
    [6]CAO Hai-peng, ZHAO Xi-hua, ZHAO He. Intelligent process design of resistance spot welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 21-24.
    [7]CAO Hai-peng, ZHAO Xi-hua, ZHAO Lei. An intelligent inference for resistance spot welding procedure parameters on CBR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 1-3,14.
    [8]CHEN Jun-mei, LU Hao, WANG Jian-hua, CHEN Wei-xin, HAO Da-jun. Effect of Mesh Sizes on Welding Deformation Prediction Precision of Buicks Underframe Assembly[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 33-35,39.
    [9]YE Feng, SONG Yong-lun, LI Di, CHEN Fu-gen. On-line Quality Monitoring in Robot Arc Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 5-7.
    [10]Zhao Xihua, Wang Chenyu. Parameter Selection Based on Expert System and Artificial Neural Network in Resistance Spot Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (4): 3-8.
  • Cited by

    Periodical cited type(1)

    1. 鲍亮亮,徐艳红,张新明,欧阳凯. 一次峰值温度对激光电弧复合焊热模拟临界再热粗晶区组织与韧性的影响. 材料导报. 2023(S2): 383-387 .

    Other cited types(0)

Catalog

    Article views (267) PDF downloads (16) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return