Advanced Search
ZHANG Mingxuan, MA Zhipeng, YU Haiyang, XIA Fafeng, WANG Desheng. Research on acoustic spreading of liquid Ga on the surface of quartz glass[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 67-72. DOI: 10.12073/j.hjxb.20210608002
Citation: ZHANG Mingxuan, MA Zhipeng, YU Haiyang, XIA Fafeng, WANG Desheng. Research on acoustic spreading of liquid Ga on the surface of quartz glass[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 67-72. DOI: 10.12073/j.hjxb.20210608002

Research on acoustic spreading of liquid Ga on the surface of quartz glass

More Information
  • Received Date: June 07, 2021
  • Available Online: January 26, 2022
  • This paper draws on the spreading behavior of liquid Ga on the surface of quartz glass when the ultrasonic horn acts on the surface of liquid Ga. The flow process and pressure change of liquid Ga was performed and analysis using Comsol Multiphysics software. The results show that the liquid Ga spreads slowly in the initial stage of the spreading process, and the spreading area of liquid Ga is 2.754 cm2 at 24 ms. The spreading area of liquid Ga increases to 5.459 cm2 at 72 ms over a short period of time. It reached an equilibrium state at 84 ms with a spreading area of 5.508 cm2. Obvious cavitation bubbles and ripples could be observed on the surface of liquid Ga during the spreading process. The internal pressure of liquid Ga changes in one cycle after ultrasound was applied. The top of liquid Ga is dominated by negative pressure, and the pressure increased to positive pressure along the radius to the center of the circle. The internal pressure of liquid Ga is dominating by positive pressure at 1.7 ms. The pressure amplitude at the surface of liquid Ga gradually decreases from top to bottom under the action of ultrasonic waves. Meanwhile, liquid Ga spreads under the combined action of internal pressure offset, Laplace pressure difference and “collapse effect”, final morphology changes significantly.
  • Lin Bin, Li Shipeng, Cao Zhongchen, et al. Theoretical modeling and experimental analysis of single-grain scratching mechanism of fused quartz glass[J]. Journal of Materials Processing Technology, 2021, 293: 117090. doi: 10.1016/j.jmatprotec.2021.117090
    李晓鹏, 张泽宇, 王伟, 等. 基于飞秒激光表面修饰的石英玻璃 润湿性分析[J]. 焊接学报, 2020, 41(11): 18 − 24.

    Li Xiaopeng, Zhang Zeyu, Wang Wei, et al. Analysis on the wettability of fused silica glass surface modified by femtosecond Laser[J]. Transactions of the China Welding Institution, 2020, 41(11): 18 − 24.
    Li Yuxiang, Chen Chen, Yi Ruixiang. Recent development of ultrasonic brazing[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 27 − 62. doi: 10.1007/s00170-021-06885-y
    Wu Yongchao, Li Hong, Qu Wenqing, et al. Ultrasonic-assisted bonding of Al2O3 ceramic, Cu, and 5056 aluminum alloy with Sn-Zn-Sb solders[J]. Welding in the World, 2020, 64(2): 247 − 256. doi: 10.1007/s40194-019-00815-z
    赵恺, 张柯柯. 超声波振动对Sn2.5Ag0.7Cu0.1RE/Cu润湿性的 影响[J]. 电焊机, 2013, 43(4): 27 − 30.

    Zhao Kai, Zhang Keke. Effect of ultrasonic vibration on Sn2.5Ag0.7Cu0.1RE/Cu wettability[J]. Electric Welding Machine, 2013, 43(4): 27 − 30.
    赵恺, 张柯柯. 电场对超声振动辅助Sn2.5Ag0.7Cu0.1RE/Cu 润 湿适配性的影响[J]. 焊接技术, 2013, 42(10): 7 − 9.

    Zhao Kai, Zhang Keke. Effect of electric field on Sn2.5Ag0.7Cu0.1RE/Cu wettability with ultrasonic vibration assisted[J]. Welding Technology, 2013, 42(10): 7 − 9.
    闫久春, 孙小磊. 超声波振动辅助钎焊技术[J]. 焊接, 2009(3): 6 − 13.

    Yan Jiuchun, Sun Xiaolei. Ultrasonic vibration assisted brazing technology[J]. Welding & Joining, 2009(3): 6 − 13.
    Deepu P, Saptarshi Basu, Abhishek Saha, et al. Spreading and atomization of droplets on a vibrating surface in a standing pressure field[J]. Applied Physics Letters, 2012, 101(14): 1 − 5. doi: 10.1063/1.4757567
    孙小磊. 玻璃连接的研究现状[J]. 焊接技术, 2015, 44(11): 1 − 4.

    Sun Xiaolei. Research status of soldering glass[J]. Welding Technology, 2015, 44(11): 1 − 4.
    孟庆森, 俞萍, 张丽娜, 等. 金属与硼硅玻璃场致扩散连接形成机理[J]. 焊接学报, 2001, 22(4): 63 − 65.

    Meng Qingsen, Yu Ping, Zhang Lina, et al. Joining mechanism of field-assisted diffusion bonding of borosilicate glass to metals[J]. Transactions of the China Welding Institution, 2001, 22(4): 63 − 65.
    柯胜男, 侯斌, 刘锦卉, 等. 赤泥硫酸熟化浸出液中镓的萃取试验[J]. 科学技术与工程, 2016, 16(26): 203 − 206.

    Ke Shengnan, Hou Bin, Liu Jinhui, et al. Experimental study on the extraction of gallium from red mud by sulfuric acid curing[J]. Science Technology and Engineering, 2016, 16(26): 203 − 206.
    Trindade L B, Nadalon J, Vilela A, et al. Numerical modeling of inclusion removal in electromagnetic stirred steel billets[J]. Steel Research International, 2009, 78(9): 708 − 713.
    Zhang J, Ma W. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation[J]. Journal of Fluid Mechanics, 2020, 892(A5): 1 − 18.
    Etiner A, Evren B, Budakli M, et al. Spreading behavior of droplets impacting over substrates with varying surface topographies[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 606: 1 − 16.
    Guo X, Chen C, Kang R, et al. Study of mechanical properties and subsurface damage of quartz glass at high temperature based on MD simulation[J]. Journal of Micromechanics and Molecular Physics, 2019, 4(2): 1 − 14.
    Ba J K, Zhang Y, Wang X, et al. Effects of deposition time on the structure and properties of AZO thin films deposited on quartz glass by magnetron sputtering[J]. Key Engineering Materials, 2019, 807: 63 − 67. doi: 10.4028/www.scientific.net/KEM.807.63
    Wang F, Schiller U D. Hysteresis in spreading and retraction of liquid droplets on parallel fiber rails[J]. Soft Matter, 2021, 17(22): 5486 − 5498. doi: 10.1039/D1SM00126D
    Shiomoto S, Higuchi H, K Yamaguchi, et al. Spreading dynamics of a precursor film of ionic liquid or water on a micropatterned polyelectrolyte brush surface[J]. Langmuir, 2021, 37(10): 3049 − 3056. doi: 10.1021/acs.langmuir.0c03260
    Hu G, Zhou Q, Bhatlawande A, et al. Patterned nickel interlayers for enhanced silver wetting, spreading and adhesion on ceramic substrates[J]. Scripta Materialia, 2021, 196(1): 1 − 6.
    Valenza F, Sitzia S, Cacciamani G, et al. Wetting and interfacial reactivity of Ni-Al alloys with Al2O3 and ZrO2 ceramics[J]. Journal of Materials Science, 2021, 56: 7849 − 7861. doi: 10.1007/s10853-021-05769-6
  • Related Articles

    [1]WANG Ningning, ZHU Haitao, FEI Jingming, AN Qi, SONG Yanyu, LIU Duo, SONG Xiaoguo. Microstructure and properties of brazed joints of C/C and TC4 with Cu foam/AgCuTi composite interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240416002
    [2]GAO Dejun, WU Shaowang, YANG Shengxu, ZHANG Chenghao, LIU Yongxu, SI Xiaoqing, CAO Jian. Study on the reactive wetting process of TiZrNiCu on TA1/TC4 heterogeneous interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 8-14. DOI: 10.12073/j.hjxb.20220726001
    [3]LI Yulong, WU Haoyue, LEI Min. Influence of Zn evaporation on wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 1-6. DOI: 10.12073/j.hjxb.20201130001
    [4]FENG Zhenwei, GAO Tengfei, SHAO Tianwei, GUO Wei, ZHU Ying, QU Ping. Brazing of C/C composite and Ni-based high temperature alloy GH3128[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 105-108.
    [5]TIAN Xiaoyu, QI Junlei, ZHANG Lixia, LIANG Yingchun, LI Hongwei, FENG Jicai. Brazing of C/C composite and GH99 superalloy Using BNi2+TiH2 composite filler powder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 35-38.
    [6]SHEN Yanxu, LIN Tiesong, HE Peng, ZHU Ming, ZHANG Zhihui, LU Fengjiao. Sn behavior over Si3N4/2024Al composite surface in wetting test of Sn-Zn alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 59-62.
    [7]MENG Gongge, ZHANG Hongyan, LIU Chao, GU Baisong. Wetting correlations between rosin & other flux components and Sn-9Zn/Cu[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 30-32.
    [8]HUANG Chao, LIN Tiesong, HE Peng, GU Xiaolong. Microstructure of TiBw/TC4 alloy and C/C composite brazed joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 39-42.
    [9]XU Zhiwu, YAN Jiuchun, WANG Changsheng, YANG Shiqin. Propagation characteristic of ultrasonic in Al MMCs and its effect on wetting behavior of liquid filler[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 5-8.
    [10]ZHANG Gui-feng, ZHANG Jian-xun, PEI Yi, XU Jian. Wetting behavior of nickel based and iron based amorphous filler metal foil on plain carbon steel pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (7): 61-64.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (269) PDF downloads (17) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return