Advanced Search
LI Yulong, WU Haoyue, LEI Min. Influence of Zn evaporation on wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 1-6. DOI: 10.12073/j.hjxb.20201130001
Citation: LI Yulong, WU Haoyue, LEI Min. Influence of Zn evaporation on wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 1-6. DOI: 10.12073/j.hjxb.20201130001

Influence of Zn evaporation on wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet

More Information
  • Received Date: November 29, 2020
  • Available Online: August 16, 2021
  • Wetting of Ag-Cu-Zn brazing alloy on TiC-Ni cermet was performed. The results show that continuous (Cu, Ni) layer forms at the interface of Ag-Cu-Zn/TiC-Ni cermet at 810 ℃for 10 min with a heating rate of 22.5 ℃/min in vacuum. The whole wetting process contains an incubation stage, a spreading stage, a pinning stage, a receding stage, and an equilibrium stage. The equilibrium contact angel is 27.3°. With the increase of heating rate from 10 ℃/min to 30 ℃/min, the evaporation velocity of Zn strengthens; the lasting time of the spreading process shortens, and the amount of (Cu, Ni) at the interface decreases. As a result, the equilibrium contact angel of Ag-Cu-Zn on TiC-Ni cermet increases with the heating rate. The evaporation of Zn weakens in argon. Only a little (Cu, Ni) forms at the interface of Ag-Cu-Zn/TiC-Ni cermet in argon, although the Ag-Cu-Zn brazing alloy dissolves a great amount of Ni matrix. So the base diameter firstly increases and the contact angle decreases with time, then the base diameter almost remains unchanged, and the contact angle increases slightly.
  • Lemboub S, Boudebane S, Gotor F J, et al. Core-rim structure formation in TiC-Ni based cermets fabricated by a combined thermal explosion/hot-pressing process[J]. International Journal of Refractory Metals and Hard Materials, 2018, 70: 84 − 92. doi: 10.1016/j.ijrmhm.2017.09.014
    Fu Z Z, Kong J H, Gajjala S M, et al. Sintering, mechanical, and oxidation properties of TiC-Ni-Mo cermets obtained from ultra-fine TiC powders[J]. Journal of Alloys and Compounds, 2018, 751: 316 − 323. doi: 10.1016/j.jallcom.2018.04.124
    Lei M, Li Y Y, Zhang H. Interfacial microstructure and mechanical properties of the TiC-Ni cermet/Ag-Cu-Zn/ Invar joint[J]. Vacuum, 2019(168): 108830.
    Laansoo A, Kübarsepp J, Surženkov A, et al. Induction brazing of cermets to steel and eddy current testing of joint quality[J]. Welding in the World, 2020, 64: 563 − 571. doi: 10.1007/s40194-020-00854-x
    雷敏, 张丽霞, 李宏伟, 等. 添加Zn对AgCu钎料在TiC金属陶瓷表面润湿性的影响[J]. 焊接学报, 2012, 33(6): 19 − 22.

    Lei Min, Zhang Lixia, Li Hongwei, et al. Influence of Zn addition on wettability of AgCu brazing alloy on TiC cermet[J]. Transactions of the China Welding Institution, 2012, 33(6): 19 − 22.
    Lei M, Feng J C, Tian X Y, et al. Reactive wetting of TiC-Ni cermet by Ag-Cu-Zn alloy during evaporation[J]. Vacuum, 2017, 138: 22 − 29. doi: 10.1016/j.vacuum.2017.01.014
    Zaharinie T, Moshwan R, Yusof F, et al. Vacuum brazing of sapphire with inconel 600 using Cu/Ni porous composite interlayer for gas pressure sensor application[J]. Materials & Design, 2014, 54: 375 − 381.
    Liu X, Huang X, Ma H, et al. Microstructure and properties of the joints of ZrO2 ceramic/stainless steel brazed in vacuum with AgCuTi active filler metal[J]. China Welding, 2018, 27(2): 52 − 56.
    Xue P, Zou Y, He P, et al. Development of low silver AgCuZnSn filler metal for Cu/steel dissimilar metal joining[J]. Metals, 2019, 9(2): 198. doi: 10.3390/met9020198
    Beura V K, Xavier V, Venkateswaran T, et al. Interdiffusion and microstructure evolution during brazing of austenitic martensitic stainless steel and aluminum-bronze with Ag-Cu-Zn based brazing filler material[J]. Journal of Alloys and Compounds, 2018, 740: 852 − 862. doi: 10.1016/j.jallcom.2018.01.043
    Xue S, Qian Y, Hu X, et al. Behavior and influence of Pb and Biin Ag-Cu-Zn brazing alloy[J]. China Welding, 2000, 9(1): 44 − 49.
    雷敏, 张丽霞, 李宏伟, 等. Zn 元素含量对AgCuZn钎料在TiC金属陶瓷表面润湿性的影响[J]. 焊接学报, 2012, 33(7): 41 − 44.

    Lei Min, Zhang Lixia, Li Hongwei, et al. Influence of Zn content on wettability of TiC cermet by AgCuZn alloy[J]. Transactions of the China Welding Institution, 2012, 33(7): 41 − 44.
    Lei M, Li Y L, Zhang H, et al. Microstructure evolution and wettability of AgeCueZn alloy on TiC-Ni cermet[J]. Vacuum, 2019, 159: 500 − 506. doi: 10.1016/j.vacuum.2018.11.004
    张华伟, 李言祥. 金属熔体中气泡形核的理论分析[J]. 物理学报, 2007, 56(8): 4864 − 4871. doi: 10.3321/j.issn:1000-3290.2007.08.082

    Zhang Huawei, Li Yanxiang. Study on bubble nucleation in liquid metal[J]. Acta Physica Sinica, 2007, 56(8): 4864 − 4871. doi: 10.3321/j.issn:1000-3290.2007.08.082
    Shen P, Zhang D, Lin Q L, et al. Wetting of polycrystalline MgO by molten Mg under evaporation[J]. Materials Chemistry and Physics, 2010, 122(1): 290 − 294. doi: 10.1016/j.matchemphys.2010.02.052
    Ahn J H, Terao N, Berghezan A. Experimental observations on wetting and infiltration fronts in metals[J]. Scripta Metallurgica, 1988, 22(6): 793 − 796. doi: 10.1016/S0036-9748(88)80051-6
  • Related Articles

    [1]LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001
    [2]WANG Shun, HAN Hongbiao, LI Shikang, LI Mengnan. Analysis of the influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experiment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 37-43. DOI: 10.12073/j.hjxb.20210131002
    [3]WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001
    [4]HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129
    [5]REN Weibin1,2, DONG Shiyun2, XU Binshi2, ZHOU Jinyu1, WANG Yujiang2. Design and implementation of laser refabrication forming closed-loop controlling for compressor blade[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059
    [6]HAN hongbiao, LI Xiangyang. Digital control of capacitance charge-discharge pulse in electro-spark deposition power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 23-26,70.
    [7]LIU Lijun, DAI Hongbin, GAO Hongming, WU Lin. Threshold calibrating of 6D touching force in welding seam identifying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 65-68.
    [8]FANG Chen-fu, YIN Shu-yan, HOU Run-shi, YU Ming, WANG Jin-cheng. Double close loops control system of peak current mode of inverter arc welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 14-18.
    [9]LI Xiao-gang, Lü Bi-feng, YAO Wei-wei, XUE Ji-ren. Study on contacting line of two intersecting pipes in welding assembly[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (4): 39-42.
    [10]Doctor Candidate Cheng Qiang, Pan Jiluan, Liu Wenhuan, Wan Kezheng. A CLOSED LOOP CONTROL SYSTEM FOR ONE SIDE MIG WELDING WITH BACK BEAD FORMATION[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (2): 110-118.
  • Cited by

    Periodical cited type(1)

    1. 李晓迪,程战,邹斌华,王蒙. 电火花沉积技术研究现状及发展趋势. 电加工与模具. 2024(S1): 18-25 .

    Other cited types(0)

Catalog

    Article views (300) PDF downloads (44) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return