Advanced Search
GAO Dejun, WU Shaowang, YANG Shengxu, ZHANG Chenghao, LIU Yongxu, SI Xiaoqing, CAO Jian. Study on the reactive wetting process of TiZrNiCu on TA1/TC4 heterogeneous interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 8-14. DOI: 10.12073/j.hjxb.20220726001
Citation: GAO Dejun, WU Shaowang, YANG Shengxu, ZHANG Chenghao, LIU Yongxu, SI Xiaoqing, CAO Jian. Study on the reactive wetting process of TiZrNiCu on TA1/TC4 heterogeneous interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 8-14. DOI: 10.12073/j.hjxb.20220726001

Study on the reactive wetting process of TiZrNiCu on TA1/TC4 heterogeneous interface

More Information
  • Received Date: July 25, 2022
  • Available Online: April 20, 2023
  • Ti51ZrNiCu filler alloy was used to study the reactive wetting process on TA1/TC4 heterogeneous interface. The interfacial microstructure of different surfaces was studied by scanning electron microscope(SEM), energy dispersive spectrometer(EDS) and wetting angle measuring instrument. And the influences of experiment parameters on interfacial microstructure and wettability were summarized. The filling experiment was finished to evaluate the wetting and spreading ability of TiZrNiCu on TA1/TC4 heterogeneous interface. The empirical equation of filling experiment was summarized. The empirical equation, h = 4000/a, was used to assess filling ability of TiZrNiCu on TA1/TC4 heterogeneous interface at 935 ℃ for 3 min. In this empirical equation, the unit of brazing gap a is μm, and the unit of climbing height h is mm.
  • 郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景[J]. 热加工工艺, 2020, 49(22): 22 − 28. doi: 10.14158/j.cnki.1001-3814.20192060

    Guo Li, He Weixia, Zhou Peng, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020, 49(22): 22 − 28. doi: 10.14158/j.cnki.1001-3814.20192060
    洪权, 郭萍, 周伟. 钛合金成形技术与应用[J]. 钛工业进展, 2022, 39(5): 27 − 32. doi: 10.13567/j.cnki.issn1009-9964.2022.05.010

    Hong Quan, Guo Ping, Zhou Wei. Forming technique and application of titanium alloy[J]. Titanium Industry Progress, 2022, 39(5): 27 − 32. doi: 10.13567/j.cnki.issn1009-9964.2022.05.010
    Li Peng, Dong Honggang, Xia Yueqing, et al. Inhomogeneous interface structure and mechanical properties of rotary friction welded TC4 titanium alloy/316L stainless steel joints[J]. Journal of Manufacturing Processes, 2018, 33: 54 − 63. doi: 10.1016/j.jmapro.2018.05.001
    Lee M K, Park J J, Lee J G, et al. Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag-Cu eutectic alloy filler and Ag interlayer[J]. Journal of Nuclear Materials, 2013, 439(1-3): 168 − 173. doi: 10.1016/j.jnucmat.2013.04.002
    陈国庆, 张秉刚, 武振周, 等. TiAl /Ti60 电子束焊接接头组织及性能[J]. 焊接学报, 2009, 30(12): 41 − 44. doi: 10.3321/j.issn:0253-360X.2009.12.011

    Chen Guoqing, Zhang Binggang, Wu Zhenzhou, et al. Microstructure and mechanical properties of electron beam welded dissimilar TiAl /Ti60 joint[J]. Transactions of the China Welding Institution, 2009, 30(12): 41 − 44. doi: 10.3321/j.issn:0253-360X.2009.12.011
    Liu Guanpeng, Li Yulong, Lei Min, et al. A novel method for fabricating micron-scale porous structure on the surface of commercially-pure Ti[J]. Materials Letters, 2021, 294: 129802. doi: 10.1016/j.matlet.2021.129802
    毕宗岳, 杨军, 刘海璋, 等. TA1/X65复合板焊接工艺及焊缝组织和性能研究[J]. 金属学报, 2016, 52(8): 1017 − 1024.

    Bi Zongyue, Yang Jun, Liu Haizhang, et al. Investigation on the welding process and microstructure and mechanical property of butt joints of TA1/X65 clad plate[J]. Acta Metallurgica Sinica, 2016, 52(8): 1017 − 1024.
    刘松. TiZrCuNi钎料真空钎焊纯钛TA1接头界面的显微组织和钎料元素扩散行为[J]. 机械工程材料, 2020, 44(1): 33 − 38. doi: 10.11973/jxgccl202001006

    Liu Song. Microstructure and filler metal element diffusion behavior of TiZrCuNi filler metal vacuum brazing pure titanium TA1 joint interface[J]. Materials for Mechanical Engineering, 2020, 44(1): 33 − 38. doi: 10.11973/jxgccl202001006
    Liu Shilei, MiaoJiakai, Zhang Weiwei, et al. Interfacial microstructure and shear strength of TC4 alloy joints vacuum brazed with Ti–Zr–Ni–Cu filler metal[J]. Materials Science & Engineering A, 2020, 775: 1 − 10.
    Yang Zhenwen, Chen Yuhan, Niu Shiyu, et al. Phase transition, microstructural evolution and mechanical properties of Ti-6Al-4V and Ti-6.5Al-3.5Mo-1.5Zr-0.3Si joints brazed with Ti-Zr-Ni-Cu filler metal[J]. Archives of Civil and Mechanical Engineering, 2020, 20(3): 1 − 15.
    Ganjeh E, Sarkhosh H. Microstructural mechanical and fractographical study of titanium-CP and Ti–6Al–4V similar brazing with Ti-based filler[J]. Materials Science & Engineering A, 2013, 559: 119 − 129.
    Lin Qiaoli, Xie Kaibin, Ran Sui, et al. Kinetic analysis of wetting and spreading at high temperatures: A review[J]. Advances in Colloid and Interface Science, 2022, 305: 1 − 17.
    Jing Yongjuan , Yue Xishan, Gao Xingqiang, et al. The influence of Zr content on the performance of TiZrCuNi brazing filler[J]. Materials Science & Engineering: A, 2016, 678(15): 190 − 196.
    冯吉才. 异种材料连接研究进展综述[J]. 航空学报, 2022, 43(2): 1 − 37. doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202001

    Feng Jicai. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 1 − 37. doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202001
    Qiu Qiwen, Wang Ying, Yang Zhenwen. Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti–Zr–Ni–Cu brazing powder without and with Mo additive[J]. Materials & Design, 2016, 90: 650 − 659.
    Song Xiaoguo, Zhang Te, Feng Yangju, et al. Brazing of TiBw/TC4 composite and Ti60 alloy using TiZrNiCu amorphous filler alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(10): 2193 − 2201. doi: 10.1016/S1003-6326(17)60245-0
  • Related Articles

    [1]ZHAO Yufeng, SONG Laidong, WANG Hongyu, JIANG Yinfang, HU Zhanming. Influence of WC addition on the wear resistance mechanism of laser additively manufactured Fe-Mn-Si-Cr-Ni alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240721001
    [2]ZHU Changshun, MAO Jizhou, WANG Hongyu, HUANG Jinlei, ZHU Jian. Memory properties of Fe-xMn-6Si-9Cr-5Ni alloy by laser additive manufacturing with powder cored wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 102-108. DOI: 10.12073/j.hjxb.20220819003
    [3]ZHU Jian, WANG Hongyu, SHI Donghui, HUANG Jinlei, MAO Jizhou. Element loss behavior and compensation of additive manufacturing memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 50-55. DOI: 10.12073/j.hjxb.20220105001
    [4]ZHANG Wei, AO Sansan, ZENG Zhi, LUO Zhen, ZUO Xinde. Ultrasonic welding of NiTi shape memory alloy with Cu interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 64-67. DOI: 10.12073/j.hjxb.2019400043
    [5]LI Hongmei, SUN Daqian, DONG Peng, CAI Xiaolong. Analysis and prevention of cracks in laser-welded joint of TiNi shape memory alloy and stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 41-44.
    [6]CHEN Yuhua, KE Liming, HUANG Yongde, XU Shilong. Laser butt welding of TiNi shape memory alloy sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 37-40.
    [7]ZHANG Chunhua, ZHANG Zhuo, ZHANG Song, HAN Zhong, MAN Hauchung. Fretting wear behavior of laser surface melted NiTi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (7): 22-24,28.
    [8]XU Yue-lan, CHENG Zhi-fu, FAN Xiao-long, CHU Cheng-lin, WANG Shi-dong. Plasma beam welding of shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 89-92.
    [9]XUE Song-bai, LO Xiao-chun, CHEN Yan. Analysis on micro structure of resistance-brazed joint of TiNi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 7-10.
    [10]XUE Song-bai, LÜ Xiao-chun, ZHANG Hui-wen. Resistance brazing technology of TiNi shape memory alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 1-4.
  • Cited by

    Periodical cited type(7)

    1. 周祥曼,王印权,王礴允,柏兴旺,付君健,田启华. 搭接中心距对电弧增材熔池流动及熔积层形貌影响的数值模拟. 材料热处理学报. 2024(03): 195-204 .
    2. 丁建祥,张伟,程远,彭勇,王克鸿. 高氮不锈钢光丝同轴激光增材组织与性能研究. 电焊机. 2024(11): 105-112 .
    3. 郭龙龙,徐斌荣,刘春伟,王军,刘广阔,曹嘉晨,吴泽兵. 基于CMT的30CrMo增材再制造工艺及力学性能. 兵器材料科学与工程. 2023(02): 29-36 .
    4. 王宏民,叶浩槐,宋莹莹,王建生,邓辅秦,潘增喜. 基于SAX算法的CMT增材制造缺陷在线监测. 焊接. 2023(08): 22-28+36 .
    5. 张浩然,丁家亮,张旭敏,贺申,王克鸿. 高氮钢双丝CMT增材工艺参数对熔滴过渡影响规律. 机械制造与自动化. 2023(05): 82-86 .
    6. 张军,邢彦锋,曹菊勇. 间隙填充电弧增材制造对表面质量的影响. 兵器材料科学与工程. 2022(01): 70-76 .
    7. 聂文忠,曾嘉艺,郭泰,李晓萱. 基于逆向成形的电弧增材制造表面质量评价. 精密成形工程. 2022(07): 92-97 .

    Other cited types(4)

Catalog

    Article views (228) PDF downloads (68) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return