Advanced Search
WANG Chungui, ZHAO Yunqiang, Deng Jun, Dong Chunlin, You Jiaqing. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 49-54. DOI: 10.12073/j.hjxb.20201208002
Citation: WANG Chungui, ZHAO Yunqiang, Deng Jun, Dong Chunlin, You Jiaqing. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 49-54. DOI: 10.12073/j.hjxb.20201208002

Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy

More Information
  • Received Date: December 07, 2020
  • Available Online: November 15, 2021
  • As the carrier of the robot friction stir welding system, the joints of the robot are connected in series mode, which will deform during the welding process. The release of deformation during the ultra-thin plate welding process will lead to defects such as weld leakage, which restricts the robot friction stir welding system Application in the welding process of ultra-thin plates. In this paper, the robot friction stir welding process of 0.5 mm-thick ultra-thin 2024-T4 aluminum alloy plate was studied. The research indicated that: Due to the insufficient rigidity of the robot body, it is necessary to increase the plunge depth or the spindle speed to realize the welding of the ultra-thin plate, When the spindle speed is 2500 r/min and the welding speed is between 600-1000 mm/min, the joint strength shows a rising trend, up to 408 MPa, reaching 90% of the base material. The joint hardness shows a double "W"-shaped distribution. The fracture form is ductile fracture.
  • 宋建岭, 李超. 搅拌摩擦焊在运载火箭贮箱制造中的应用与发展[J]. 焊接, 2018(5): 21 − 27.

    Song Jianling, Li Chao. Application of FSW technology to tank manufacturing of launch vehicle and its development[J]. Welding & Joining, 2018(5): 21 − 27.
    张华, 林三宝, 吴林, 等. 搅拌摩擦焊研究进展及前景展望[J]. 焊接学报, 2003, 24(3): 91 − 97. doi: 10.3321/j.issn:0253-360X.2003.03.025

    Zhang Hua, Lin Sanbao, Wu Lin, et al. Current progress and prospect of friction stir welding[J]. Transactions of the China Welding Institution, 2003, 24(3): 91 − 97. doi: 10.3321/j.issn:0253-360X.2003.03.025
    Wang G, Zhao Y, Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. Journal of Materials Science & Technology, 2018(1): 73 − 91.
    董春林, 栾国红, 关桥. 搅拌摩擦焊在航空航天工业的应用发展现状与前景[J]. 焊接, 2008(11): 25 − 31. doi: 10.3969/j.issn.1001-1382.2008.11.009

    Dong Chunlin, Luan Guohong, Guang Qiao. Prospects of application and development of friction stir welding in aerospace and aviation industry[J]. Welding & Joining, 2008(11): 25 − 31. doi: 10.3969/j.issn.1001-1382.2008.11.009
    王春桂, 赵运强, 董春林, 等. 6063-T6铝合金双轴肩搅拌摩擦焊接头组织及力学性能分析[J]. 焊接学报, 2018, 39(10): 108 − 112.

    Wang Chungui, Zhao Yunqiang, Dong Chunlin,et al. Analysis on microstructure and mechanical properties of 6063-T6 self-reacting friction stir welding[J]. Transactions of the China Welding Institution, 2018, 39(10): 108 − 112.
    赵慧慧, 封小松, 熊艳艳, 等. 铝合金超薄板无倾角微搅拌摩擦焊接头组织性能[J]. 焊接学报, 2014, 35(7): 47 − 50.

    Zhao Huihui, Feng Xiaosong, Xion Yanyan,et al. Microstructure and properties of micro friction stir weldedjoint of Al-alloy ultra thin plate with zero tilt angle[J]. Transactions of the China Welding Institution, 2014, 35(7): 47 − 50.
    Liu F J, Fu L, Chen H Y. Microstructure evolution and fracture behaviour of friction stir welded 6061-T6 thin plate joints under high rotational speed[J]. Science & Technology of Welding & Joining, 2017, 23(4): 1 − 11.
    Liu F J, Fu L, Chen H Y. Effect of high rotational speed on temperature distribution, microstructure evolution, and mechanical properties of friction stir welded 6061-T6 thin plate joints[J]. International Journal of Advanced Manufacturing Technology, 2018, 96: 1823 − 1833. doi: 10.1007/s00170-018-1736-0
    张铁浩, 韩德成, 刘胜龙, 等. 轨道车辆铝合金车体搅拌摩擦焊的工业化应用[J]. 焊接, 2013(10): 25 − 30.

    Zhang Tiehao, Han Decheng, Liu Shenglong, et al. Industrial application of friction stir welding for aluminum alloy body of rail vehicles[J]. Welding & Joining, 2013(10): 25 − 30.
    Hariharan A, Pandurangan B, Yen C, et al. Development of a robust and cost-effective friction stir welding process for use in advanced military vehicles[J]. Journal of Materials Engineering & Performance, 2011, 20(1):11−23.
    董春林, 李继忠, 栾国红, 等. 机器人搅拌摩擦焊发展现状与趋势[J]. 航空制造技术, 2014, 17: 76−79.

    Dong Chunlin, Li Jizhong, Luan Guohong, et al. Development ofrobotic friction stir welding technology[J]. Aeronautical Manufacturing Technology, 2014, 17: 76−79.
    Zaeh M F, Schmid D, Muenchen I. Robotic friction stir welding of concave shaped surfaces[J]. Aluminium, 2010, 86(10): 58 − 61.
    祁若龙, 周维佳, 张伟, 等. 搅拌摩擦焊接机器人大型薄壁零件空间曲线焊缝测量与轨迹生成[J]. 机器人, 2014, 36(6): 744 − 750.

    Qi Ruolong, Zhou Weijia, Zhang Wei, et al. Measurement and trace generation of a friction stir welding robot for space weld jointon large thin-walled parts[J]. Robot, 2014, 36(6): 744 − 750.
    Preston R V, Shercliff H R, Withers P J, et al. Synchrotron X-ray measurement and finite element analysis of residual strain in tungsten inert gas welded aluminum alloy 2024[J]. Metallurgical and Materials Transactions A, 2006, 37(12): 3629 − 3637. doi: 10.1007/s11661-006-1057-z
  • Related Articles

    [1]WANG Bo, YANG Fan, LI Lianbo, ZHANG Hongtao, DENG Qingwen. Analysis of weld forming in magnetically controlled Plasma-FCAW underwater hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 74-80. DOI: 10.12073/j.hjxb.20211104005
    [2]HUANG Ruisheng, ZOU Jipeng, GONG Jianfeng, YANG Yicheng, LIANG Xiaomei. Dynamic behavior of laser scanning welding pool and plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 11-16. DOI: 10.12073/j.hjxb.20191016004
    [3]LI Bin, ZHAO Zeyang, WANG Chunming, HU Xiyuan, GUO Lian. Behaviors of plasma and keyhole in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 87-91.
    [4]DONG Qipeng, ZHANG Jiongming, LEI Shaowu, ZHAO Xinkai. Simulation of characteristics of DC plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 27-30.
    [5]YANG Tao, XU Kewang, LIU Yongzhen, GAO Hongming, WU Lin. Analysis on arc characteristics of plasma-MIG hybrid arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 62-66.
    [6]YANG Tao, ZHANG Shenghu, GAO Hongming, WU Lin, XU Kewang, LIU Yongzhen. Plasma-MIG hybrid arc welding with PID increment constant current or voltage control algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 81-84,88.
    [7]WANG Dongsheng, TIAN Zongjun, ZHANG Shaowu, QU Guang, SHEN Lida, HUANG Yinhui. Numerical simulation of temperature field on nanostructured agglomerated powder during plasma spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 50-54.
    [8]LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28.
    [9]ZHANG Yi-shun, DONG Xiao-qiang, LI De-yuan. Numerical simulation of fluid field and temperature field in plasma torch[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 77-80.
    [10]Song Yonglun, Li Junyue. Thermo-equilibdum in welding are plasmas[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (2): 138-145.
  • Cited by

    Periodical cited type(2)

    1. 严春妍,顾正家,聂榕圻,张可召,吴晨,王宝森. X80管线钢水下湿法多道焊残余应力分析. 焊接学报. 2024(03): 15-21+130 . 本站查看
    2. 李志刚,魏成法,刘德俊,杨翔. 高压水下湿法焊接电弧等离子体介质击穿机制. 焊接学报. 2023(08): 49-56+132 . 本站查看

    Other cited types(1)

Catalog

    Article views (316) PDF downloads (36) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return