Advanced Search
LI Chong, TIAN Yalin, QI Zhenguo, WANG Wei, YANG Yanlong, WANG Yijing. Microstructure and mechanical properties of non-weld-thinning friction stir welded 6082-T6 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 102-107. DOI: 10.12073/j.hjxb.20220104001
Citation: LI Chong, TIAN Yalin, QI Zhenguo, WANG Wei, YANG Yanlong, WANG Yijing. Microstructure and mechanical properties of non-weld-thinning friction stir welded 6082-T6 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 102-107. DOI: 10.12073/j.hjxb.20220104001

Microstructure and mechanical properties of non-weld-thinning friction stir welded 6082-T6 aluminum alloy joints

More Information
  • Received Date: January 03, 2022
  • Available Online: June 23, 2022
  • Based on the "zero plunge depth" concept, a tapered threaded pin with triple facets and a shoulder with a circular groove were designed to solve the weld-thinning problem in the friction stir welding of 6082-T6 aluminum alloy used in the railway fields. The results indicated that the increase of the rotational speed could increase the heat input and inhibit the formation of the defects when the welding speed was constant. Compared with the parameter of 400 r/min, the process window at 600 r/min was effectively broadened, and the welding speed could reach 400 mm/min. The heat input was under the coupling effect of welding speed and rotational speed. The welding joint was prone to coarse microstructure under the high heat input, which affected the strength of the welded joint. Under the rotational speed of 600 r/min and the welding speed of 500 mm/min, the tensile strength of the joint reach 254 MPa, reaching 80% of the base material.
  • 张满当, 赵运强, 董春林, 等. 铝锂合金机器人搅拌摩擦焊接头组织和性能[J]. 焊接学报, 2021, 42(5): 71 − 76. doi: 10.12073/j.hjxb.20201120002

    Zhang Mandang, Zhao Yunqiang, Dong Chunlin, et al. Structure and properties of friction stir welding joint of Al-Li alloy[J]. Transactions of the China Welding Institution, 2021, 42(5): 71 − 76. doi: 10.12073/j.hjxb.20201120002
    秦丰, 周军, 侯振国, 等. 6082铝合金双面搅拌摩擦焊接头组织与性能[J]. 焊接学报, 2021, 42(2): 75 − 80. doi: 10.12073/j.hjxb.20201231001

    Qin Feng, Zhou Jun, Hou Zhenguo, et al. Research on microstructure and properties of double-sided friction stir welding joint of 6082 aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(2): 75 − 80. doi: 10.12073/j.hjxb.20201231001
    Lü Z, Han Z, Zhu D, et al. Enlarged-end tool for friction stir lap welding towards hook defect controlling[J]. China Welding, 2020, 29(1): 1 − 7.
    Farghaly A A, El-Nikhaily A E, Essa A R S. Prediction of tensile strength of friction stir welded 6061 Al plates[J]. China Welding, 2019, 28(3): 1 − 6.
    Sun H, Zhou Q, Zhu J, et al. Deformation analysis of a friction stir-welded thin sheet aluminum alloy joint[J]. China Welding, 2020, 29(1): 56 − 62.
    Huang Y, Meng X, Zhang Y, et al. Micro friction stir welding of ultra-thin Al-6061 sheets[J]. Journal of Materials Processing Technology, 2017, 250(6): 313 − 319.
    Ma X, Xie Y, Meng X, et al. Stepped-shoulder friction stir welding to alleviate weld thinning for dissimilar AA2195-T8/AA2219-T6 alloys[J]. Science and Technology of Welding and Joining, 2021, 26(8): 599 − 605. doi: 10.1080/13621718.2021.1982341
    Guan M, Wang Y, Huang Y, et al. Non-weld-thinning friction stir welding[J]. Materials Letters, 2019, 255: 126506. doi: 10.1016/j.matlet.2019.126506
    计鹏飞, 刘西伟, 张玉常, 等. 20 mm厚2219铝合金可回抽搅拌摩擦焊接及接头组织和性能分析[J]. 焊接学报, 2021, 42(2): 86 − 91. doi: 10.12073/j.hjxb.20200729001

    Ji Pengfei, Liu Xiwei, Zhang Yuchang, et al. Refilling friction stir welding of 20 mm thick AA2219 and analysis of microstructure and mechanical properties[J]. Transactions of the China Welding Institution, 2021, 42(2): 86 − 91. doi: 10.12073/j.hjxb.20200729001
    王春桂, 赵运强, 邓军, 等. 2024-T4超薄铝合金机器人搅拌摩擦焊接头组织及力学性能[J]. 焊接学报, 2021, 42(10): 49 − 54.

    Wang Chungui, Zhao Yunqiang, Deng Jun, et al. Microstructure evolution and mechanical properties of robotic friction stir welded joints of 2024-T4 ultra-thin aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(10): 49 − 54.
    Meng X, Gao S, Ma L, et al. Effects of rotational velocity on microstructures and mechanical properties of surface compensation friction stir welded 6005A-T6 aluminum alloy[J]. Engineering Review, 2016, 36(2): 107 − 113.
    申浩, 杨新岐, 李冬晓, 等. 6061-T6铝合金的静止轴肩搅拌摩擦焊工艺及组织性能[J]. 焊接学报, 2016, 37(5): 119 − 123.

    Shen Hao, Yang Xinqi, Li Dongxiao, et al. Microstructures and mechanical properties of 6061-T6 aluminum alloy welded by stationary shoulder friction stir welding process[J]. Transactions of the China Welding Institution, 2016, 37(5): 119 − 123.
    Zhang H, Wang M, Zhou W, et al. Microstructure-property characteristics of a novel non-weld-thinning friction stir welding process of aluminum alloys[J]. Materials and Design, 2015, 86: 379 − 387. doi: 10.1016/j.matdes.2015.06.106
  • Related Articles

    [1]LAN Hu, ZHANG Huajun, CHEN Ajing, CHEN Shanben. Numerical simulation on dynamic process and thermal physical properties of narrow gap MAG vertical welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 77-82.
    [2]WANG Lei, HUANG Songtao, JIAO Xiangdong, GU Xiaoman. Stability of hyperbaric pulsed MAG welding arc and its compensation by higher arc voltage[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 63-66.
    [3]ZHENG Senmu, GAO Hongming, LIU Xin. Arc behavior of MAG welding with strip electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 97-100.
    [4]LI Jing, LI Fang, ZHU Wei, LIAO Jianxiong, QIAN Luhong. A new seam location extraction method for pipe-line backing welding of MAG based on passive optical vision sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 69-72.
    [5]LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28.
    [6]WEN Yuanmei, HUANG Shisheng, WU Kaiyuan, LAO Zhengping. Welding behavior of two current phase relations for twin-wire pulsed MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 59-62,66.
    [7]WANG Jia-you, GUO Hong-bin, YANG Feng. A new rotating arc process for narrow gap MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 65-67.
    [8]BAO Ye-feng, ZHOU Yun, WU Yi-xiong, LOU Song-nian. Instant unstable phenomenon of rotational spray transfer in high-current MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 73-76.
    [9]Sun Lunqiang, Wu Lin. A Regression Model of Weld Bead Geometry for Pulsed MAG Welding in Multipositions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (4): 249-257.
    [10]Jiang Weiyan, Zhang Jiuhai, Zhao Chongyi. Behaviors of metal transfer in pulsed MIG(MAG) welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (1): 50-58.

Catalog

    Article views (321) PDF downloads (33) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return