Advanced Search
LI Li, ZHAO Wei, FENG Zhixue, LI Xiaoqiang, ZHOU Chang, WEI Hongyin. Brazability of a novel Ti-based filler alloy on the γ-TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 30-37. DOI: 10.12073/j.hjxb.20201023004
Citation: LI Li, ZHAO Wei, FENG Zhixue, LI Xiaoqiang, ZHOU Chang, WEI Hongyin. Brazability of a novel Ti-based filler alloy on the γ-TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 30-37. DOI: 10.12073/j.hjxb.20201023004

Brazability of a novel Ti-based filler alloy on the γ-TiAl alloy

More Information
  • Received Date: October 22, 2020
  • Available Online: April 15, 2021
  • Ti-47Al-2Nb-2Cr-0.15B (at.%) alloy was successfully brazed at 1050 ~ 1125 ℃ for 10 min with amorphous Ti-Zr-Cu-Ni-Co-Mo filler. The microstructures of crystalline and amorphous fillers, the effects of brazing temperature (900 ~ 1125 ℃) and holding time (0 ~ 15 min) on the wettability and spreadability of the crystalline filler over the γ-TiAl alloy as well as the relationship between the microstructure and hardness of TiAl brazed joint at different brazing temperature were analyzed by SEM, EDS, XRD, TEM and Vickers hardness tester. Results showed that the increment of spreading area of the crystalline filler on γ-TiAl alloy increased firstly and then decreased with the increasing of temperature and holding time. The interfacial microstructure of γ-TiAl brazed joint mainly consisted of TiAl substrate layer, α2+AlCuTi (layer Ⅰ)and γ-(Ti, Zr)2(Ni, Cu)+α-(Ti, Zr) (layer Ⅱ). The hardness of the brazing seam increased with the brazing temperature and the maximum hardness of 872(±8) HV was obtained at 1125 ℃, which was mainly related to the hard and brittle (Ti, Zr)2(Ni, Cu) and α2-Ti3Al intermetallics generated in the brazing seam.
  • Qu S J, Tang S Q, Feng A H, et al. Microstructure evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy[J]. Acta. Materialia, 2018, 148: 300 − 310. doi: 10.1016/j.actamat.2018.02.013
    蔡小强, 王颖, 杨振文, 等. Ti2AlNb合金瞬时液相扩散连接接头界面组织及性能分析[J]. 焊接学报, 2018, 39(2): 24 − 28.

    Cai Xiaoqiang, Wang Ying, Yang Zhenwen, et al. Interfacial microstructures and mechanical properties of transient liquid phase (TLP) bonding of Ti2AlNb alloy with Ti/Ni interlayer[J]. Transactions of the China Welding Institution, 2018, 39(2): 24 − 28.
    Zhang T T, Yang X S, Miao K S, et al. Microstructure evolution and brazing mechanism of Ti5Si3/Ti3Al composite and Ni-based superalloy joints using Ti-Zr-Cu-Ni filler alloy[J]. Materials Science and Engineering A, 2018, 713: 28 − 34. doi: 10.1016/j.msea.2017.12.049
    Qiu Q W, Wang Y, Yang Z W, et al. Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti-Zr-Ni-Cu brazing powder without and with Mo additive[J]. Materilas & Design, 2016, 90: 650 − 659.
    李海新, 林铁松, 何鹏, 等. TiAl与Ni基合金接触反应钎焊接头界面组织及性能[J]. 稀有金属材料与工程, 2012, 41(11): 1945 − 1949. doi: 10.3969/j.issn.1002-185X.2012.11.014

    Li Haixin, Lin Tiesong, He Peng, et al. Interfacial structure and properties of reactive brazing joints of TiAl/Ni-based alloy[J]. Rare Metal Materials and Engineering, 2012, 41(11): 1945 − 1949. doi: 10.3969/j.issn.1002-185X.2012.11.014
    Cao J, Dai X Y, Liu J Q, et al. Relationship between microstructure and mechanical properties of TiAl/Ti2AlNb joint brazed using Ti-27Co eutectic filler metal[J]. Materials & Design, 2017, 12: 176 − 184.
    Chen G Q, Zhang B G, Liu W, et al. Influence of aluminum content on the microstructure and properties of electron beam welded joints of TiAl/TC4 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(3): 452 − 456. doi: 10.1016/S1875-5372(13)60046-6
    任海水, 熊华平, 陈波, 等. 以Ti-Zr-Cu-Ni-Fe合金为中间层的Ti3Al/TiAl瞬时液相扩散连接[J]. 焊接学报, 2016, 37(3): 106 − 110.

    Ren Haishui, Xiong Huaping, Chen Bo, et al. Transient liquid phase diffusion bonding of Ti3Al/TiAl joint using a Ti-Zr-Cu-Ni-Fe interlayer[J]. Transactions of the China Welding Institution, 2016, 37(3): 106 − 110.
    Du Z H, Zhang K F, Lu Z, et al. Microstructure and mechanical properties of vacuum diffusion bonding joints for γ-TiAl based alloy[J]. Vacuum, 2018, 150: 96 − 104. doi: 10.1016/j.vacuum.2018.01.035
    李志锋, 李小强, 李力, 等. 一种钛基钎料钎焊TiAl合金接头的高温力学性能分析[J]. 焊接学报, 2019, 40(5): 148 − 153. doi: 10.12073/j.hjxb.2019400143

    Li Zhifeng, Li Xiaoqiang, Li Li, et al. Analysis on high temperature properties of TiAl alloy joints brazed with a Ti-based filler[J]. Transactions of the China Welding Institution, 2019, 40(5): 148 − 153. doi: 10.12073/j.hjxb.2019400143
    Song X G, Si X Q, Cao J, et al. Microstructure and joining properties of high nb-containing TiAl alloy brazed joints[J]. Rare Metal Materials and Engineering, 2018, 47(1): 52 − 58. doi: 10.1016/S1875-5372(18)30071-7
    Dong H G, Yang Z L, Yang G S, et al. Vacuum brazing of TiAl alloy to 40Cr steel with Ti60Ni22Cu10Zr8 alloy foil as filler metal[J]. Materials Science and Engineering A, 2013, 561: 252 − 258. doi: 10.1016/j.msea.2012.11.014
    Cao J, He P, Wang M. Mechanical milling of Ti–Ni–Si filler metal for brazing TiAl intermetallics[J]. Intermetallics, 2011, 19: 855 − 859. doi: 10.1016/j.intermet.2011.01.017
    Li H X, He P, Lin T S, et al. Microstructure and shear strength of reactive brazing joints of TiAl/Ni-based alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 324 − 329. doi: 10.1016/S1003-6326(11)61178-3
    Cai Y S, Liu R C, Zhu Z W, et al. Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti-Zr-Cu-Ni amorphous alloy as filler metal[J]. Intermetallics, 2017, 91: 35 − 44. doi: 10.1016/j.intermet.2017.08.008
    Tetsui T. Effects of brazing filler on properties of brazed joints between TiAl and metallic materials[J]. Intermetallics, 2001, 9: 253 − 260. doi: 10.1016/S0966-9795(00)00129-1
    Ye L, Xiong H P, Huai J F, et al. Microstructures of the TiAl joints brazed with Ti-Zr-based filler metals[J]. Welding in the World, 2015, 59: 201 − 208. doi: 10.1007/s40194-014-0192-1
    Liaw D W, Wu Z Y, Shiue R K, et al. Infrared vacuum brazing of Ti-6Al-4V and Nb using the Ti-15Cu-15Ni foil[J]. Materials Science and Engineering A, 2007, 454-455: 104 − 113. doi: 10.1016/j.msea.2006.11.058
    Lee J G, Choi Y H, Lee J K, et al. Low-temperature brazing of titanium by the application of a Zr-Ti-Ni-Cu-Bebulk metallic glass (BMG) alloy as a filler[J]. Intermetallics, 2010, 18: 70 − 73. doi: 10.1016/j.intermet.2009.06.012
    Li L, Li X Q, Hu K, et al. Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29: 754 − 763. doi: 10.1016/S1003-6326(19)64985-X
    Chang C T, Wu Z Y, Shuie R K, et al. Infrared brazing Ti-6Al-4V and SP-700 alloys using the Ti-20Zr-20Cu-20Ni braze alloy[J]. Materials Letters, 2007, 61: 842 − 845. doi: 10.1016/j.matlet.2006.05.077
    Leyens C, Peters M. Titanium and titanium alloys[M]. 1st edition. New York: Wiley-VCH, 2003.
    张翥, 王群骄, 莫畏. 钛的金属学与热处理[M]. 第一版. 北京: 冶工业出版社, 2009.

    Zhang Zhu, Wang Jiaoqun, Mo Wei. Metallography and heat treatment of titanium[M]. 1st edition. Beijing: Metallurgical Industry Press, 2009.
    李力, 李小强, 李志锋, 等. Ti-Zr-Cu-Ni-Co-Mo钎料的特性及其钎焊γ-TiAl接头的研究[J]. 稀有金属材料与工程, 2017, 46(8): 2214 − 2219.

    Li Li, Li Xiaoqiang, Li Zhifeng, et al. Characterization of Ti-Zr-Cu-Ni-Co-Mo filler and brazed γ-TiAl joint[J]. Rare Metal Materials and Engineering, 2017, 46(8): 2214 − 2219.
    Sekulić D P. Advances in brazing-science, technology and applications[M]. 1st ed. Philadelphia: Woodhead Publishing limited, 2013.
    Liu Y H, Hu J D, Shen P, et al. Microstructural and mechanical properties of jointed ZrO2/Ti–6Al–4V alloy using Ti33Zr17Cu50 amorphous brazing filler[J]. Materials & Design, 2013, 47: 281 − 286.
    Massalski T B. Binary alloy phase diagrams[M]. Materials Park: ASM International, 1990.
    Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagrams[M]. 1st edition. US: ASM International, 1995.
    Li L, Li X Q, Hu K, et al. Effects of brazing temperature and testing temperature on the microstructure and shear strength of γ-TiAl joints[J]. Materials Science and Engineering A, 2015, 634: 91 − 98. doi: 10.1016/j.msea.2015.03.039
    Simões S, Tavares C J, Guedes A. Joining of γ-TiAl alloy to Ni-Based superalloy using Ag-Cu sputtered coated Ti brazing filler foil[J]. Metals, 2018, 8(9): 1 − 14. doi: 10.3390/met8090723
    Shiue R K, Wu S K, Chen S Y. Infrared brazing of TiAl intermetallic using BAg-8 braze alloy[J]. Acta Materialia, 2003, 51: 1991 − 2004. doi: 10.1016/S1359-6454(02)00606-7
    Simões S, Viana F, Koçak M, et al. Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils[J]. Materials Chemistry and Physics, 2011, 128: 202 − 207. doi: 10.1016/j.matchemphys.2011.02.059
    Lee S J, Wu S K. Infrared joining strength and interfacial microstructures of Ti-48Al-2Nb-2Cr intermetallics using Ti-15Cu-15Ni foil[J]. Intermetallics, 1999, 7: 11 − 21. doi: 10.1016/S0966-9795(98)00004-1
  • Related Articles

    [1]JIAO Guangchen, ZHAN Yong, WEN Jianfeng. Simulation of fatigue crack growth behavior in welded plates considering different material properties of weld and base metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 52-58. DOI: 10.12073/j.hjxb.20221221001
    [2]WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001
    [3]JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002
    [4]DAI Qilei, MENG Lichun, LIANG Zhifang, WU Jianjun, SHI Qingyu. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 9-12,38.
    [5]TONG Jianhua, ZHANG Kun, LIN Song, WANG Weibing. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 105-108.
    [6]ZHANG Tianhui, GUO Lin, SHI Jie, XUE Bin, XU Renping. Fatigue crack propagation with probability for ADB610 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 79-82.
    [7]ZHU Xiaogang, WANG Lianfeng, QIAO Fengbin, GUO Lijie. Fatigue failure analysis of 6061-T6 aluminum alloy refilled friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 91-94.
    [8]TANG Zhenyun, MA Yingjie, MAO Zhiyong, LEI Jiafeng, LIU Yuyin, LI Jinwei. Microstructure and fatigue crack growth behavior of electron beam welded joints for TC4-DT titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 109-112.
    [9]Gao Jiming, Huang Yuhua, Liu Romgxuan, Chen Jiaquan. Fatigue Crack Growth Rate in Weld Metal of Steel HQ-60 Under High Stress Ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 190-195.
    [10]Qiu Hai, Li Guangduo. Influence of stress ratio R on threshold value △Kth of fatigue crack propagation for welded joints of 09CuPCrNi steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 24-29.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (476) PDF downloads (29) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return