Citation: | LI Li, ZHAO Wei, FENG Zhixue, LI Xiaoqiang, ZHOU Chang, WEI Hongyin. Brazability of a novel Ti-based filler alloy on the γ-TiAl alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 30-37. DOI: 10.12073/j.hjxb.20201023004 |
Qu S J, Tang S Q, Feng A H, et al. Microstructure evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy[J]. Acta. Materialia, 2018, 148: 300 − 310. doi: 10.1016/j.actamat.2018.02.013
|
蔡小强, 王颖, 杨振文, 等. Ti2AlNb合金瞬时液相扩散连接接头界面组织及性能分析[J]. 焊接学报, 2018, 39(2): 24 − 28.
Cai Xiaoqiang, Wang Ying, Yang Zhenwen, et al. Interfacial microstructures and mechanical properties of transient liquid phase (TLP) bonding of Ti2AlNb alloy with Ti/Ni interlayer[J]. Transactions of the China Welding Institution, 2018, 39(2): 24 − 28.
|
Zhang T T, Yang X S, Miao K S, et al. Microstructure evolution and brazing mechanism of Ti5Si3/Ti3Al composite and Ni-based superalloy joints using Ti-Zr-Cu-Ni filler alloy[J]. Materials Science and Engineering A, 2018, 713: 28 − 34. doi: 10.1016/j.msea.2017.12.049
|
Qiu Q W, Wang Y, Yang Z W, et al. Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti-Zr-Ni-Cu brazing powder without and with Mo additive[J]. Materilas & Design, 2016, 90: 650 − 659.
|
李海新, 林铁松, 何鹏, 等. TiAl与Ni基合金接触反应钎焊接头界面组织及性能[J]. 稀有金属材料与工程, 2012, 41(11): 1945 − 1949. doi: 10.3969/j.issn.1002-185X.2012.11.014
Li Haixin, Lin Tiesong, He Peng, et al. Interfacial structure and properties of reactive brazing joints of TiAl/Ni-based alloy[J]. Rare Metal Materials and Engineering, 2012, 41(11): 1945 − 1949. doi: 10.3969/j.issn.1002-185X.2012.11.014
|
Cao J, Dai X Y, Liu J Q, et al. Relationship between microstructure and mechanical properties of TiAl/Ti2AlNb joint brazed using Ti-27Co eutectic filler metal[J]. Materials & Design, 2017, 12: 176 − 184.
|
Chen G Q, Zhang B G, Liu W, et al. Influence of aluminum content on the microstructure and properties of electron beam welded joints of TiAl/TC4 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(3): 452 − 456. doi: 10.1016/S1875-5372(13)60046-6
|
任海水, 熊华平, 陈波, 等. 以Ti-Zr-Cu-Ni-Fe合金为中间层的Ti3Al/TiAl瞬时液相扩散连接[J]. 焊接学报, 2016, 37(3): 106 − 110.
Ren Haishui, Xiong Huaping, Chen Bo, et al. Transient liquid phase diffusion bonding of Ti3Al/TiAl joint using a Ti-Zr-Cu-Ni-Fe interlayer[J]. Transactions of the China Welding Institution, 2016, 37(3): 106 − 110.
|
Du Z H, Zhang K F, Lu Z, et al. Microstructure and mechanical properties of vacuum diffusion bonding joints for γ-TiAl based alloy[J]. Vacuum, 2018, 150: 96 − 104. doi: 10.1016/j.vacuum.2018.01.035
|
李志锋, 李小强, 李力, 等. 一种钛基钎料钎焊TiAl合金接头的高温力学性能分析[J]. 焊接学报, 2019, 40(5): 148 − 153. doi: 10.12073/j.hjxb.2019400143
Li Zhifeng, Li Xiaoqiang, Li Li, et al. Analysis on high temperature properties of TiAl alloy joints brazed with a Ti-based filler[J]. Transactions of the China Welding Institution, 2019, 40(5): 148 − 153. doi: 10.12073/j.hjxb.2019400143
|
Song X G, Si X Q, Cao J, et al. Microstructure and joining properties of high nb-containing TiAl alloy brazed joints[J]. Rare Metal Materials and Engineering, 2018, 47(1): 52 − 58. doi: 10.1016/S1875-5372(18)30071-7
|
Dong H G, Yang Z L, Yang G S, et al. Vacuum brazing of TiAl alloy to 40Cr steel with Ti60Ni22Cu10Zr8 alloy foil as filler metal[J]. Materials Science and Engineering A, 2013, 561: 252 − 258. doi: 10.1016/j.msea.2012.11.014
|
Cao J, He P, Wang M. Mechanical milling of Ti–Ni–Si filler metal for brazing TiAl intermetallics[J]. Intermetallics, 2011, 19: 855 − 859. doi: 10.1016/j.intermet.2011.01.017
|
Li H X, He P, Lin T S, et al. Microstructure and shear strength of reactive brazing joints of TiAl/Ni-based alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 324 − 329. doi: 10.1016/S1003-6326(11)61178-3
|
Cai Y S, Liu R C, Zhu Z W, et al. Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti-Zr-Cu-Ni amorphous alloy as filler metal[J]. Intermetallics, 2017, 91: 35 − 44. doi: 10.1016/j.intermet.2017.08.008
|
Tetsui T. Effects of brazing filler on properties of brazed joints between TiAl and metallic materials[J]. Intermetallics, 2001, 9: 253 − 260. doi: 10.1016/S0966-9795(00)00129-1
|
Ye L, Xiong H P, Huai J F, et al. Microstructures of the TiAl joints brazed with Ti-Zr-based filler metals[J]. Welding in the World, 2015, 59: 201 − 208. doi: 10.1007/s40194-014-0192-1
|
Liaw D W, Wu Z Y, Shiue R K, et al. Infrared vacuum brazing of Ti-6Al-4V and Nb using the Ti-15Cu-15Ni foil[J]. Materials Science and Engineering A, 2007, 454-455: 104 − 113. doi: 10.1016/j.msea.2006.11.058
|
Lee J G, Choi Y H, Lee J K, et al. Low-temperature brazing of titanium by the application of a Zr-Ti-Ni-Cu-Bebulk metallic glass (BMG) alloy as a filler[J]. Intermetallics, 2010, 18: 70 − 73. doi: 10.1016/j.intermet.2009.06.012
|
Li L, Li X Q, Hu K, et al. Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29: 754 − 763. doi: 10.1016/S1003-6326(19)64985-X
|
Chang C T, Wu Z Y, Shuie R K, et al. Infrared brazing Ti-6Al-4V and SP-700 alloys using the Ti-20Zr-20Cu-20Ni braze alloy[J]. Materials Letters, 2007, 61: 842 − 845. doi: 10.1016/j.matlet.2006.05.077
|
Leyens C, Peters M. Titanium and titanium alloys[M]. 1st edition. New York: Wiley-VCH, 2003.
|
张翥, 王群骄, 莫畏. 钛的金属学与热处理[M]. 第一版. 北京: 冶工业出版社, 2009.
Zhang Zhu, Wang Jiaoqun, Mo Wei. Metallography and heat treatment of titanium[M]. 1st edition. Beijing: Metallurgical Industry Press, 2009.
|
李力, 李小强, 李志锋, 等. Ti-Zr-Cu-Ni-Co-Mo钎料的特性及其钎焊γ-TiAl接头的研究[J]. 稀有金属材料与工程, 2017, 46(8): 2214 − 2219.
Li Li, Li Xiaoqiang, Li Zhifeng, et al. Characterization of Ti-Zr-Cu-Ni-Co-Mo filler and brazed γ-TiAl joint[J]. Rare Metal Materials and Engineering, 2017, 46(8): 2214 − 2219.
|
Sekulić D P. Advances in brazing-science, technology and applications[M]. 1st ed. Philadelphia: Woodhead Publishing limited, 2013.
|
Liu Y H, Hu J D, Shen P, et al. Microstructural and mechanical properties of jointed ZrO2/Ti–6Al–4V alloy using Ti33Zr17Cu50 amorphous brazing filler[J]. Materials & Design, 2013, 47: 281 − 286.
|
Massalski T B. Binary alloy phase diagrams[M]. Materials Park: ASM International, 1990.
|
Villars P, Prince A, Okamoto H. Handbook of ternary alloy phase diagrams[M]. 1st edition. US: ASM International, 1995.
|
Li L, Li X Q, Hu K, et al. Effects of brazing temperature and testing temperature on the microstructure and shear strength of γ-TiAl joints[J]. Materials Science and Engineering A, 2015, 634: 91 − 98. doi: 10.1016/j.msea.2015.03.039
|
Simões S, Tavares C J, Guedes A. Joining of γ-TiAl alloy to Ni-Based superalloy using Ag-Cu sputtered coated Ti brazing filler foil[J]. Metals, 2018, 8(9): 1 − 14. doi: 10.3390/met8090723
|
Shiue R K, Wu S K, Chen S Y. Infrared brazing of TiAl intermetallic using BAg-8 braze alloy[J]. Acta Materialia, 2003, 51: 1991 − 2004. doi: 10.1016/S1359-6454(02)00606-7
|
Simões S, Viana F, Koçak M, et al. Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils[J]. Materials Chemistry and Physics, 2011, 128: 202 − 207. doi: 10.1016/j.matchemphys.2011.02.059
|
Lee S J, Wu S K. Infrared joining strength and interfacial microstructures of Ti-48Al-2Nb-2Cr intermetallics using Ti-15Cu-15Ni foil[J]. Intermetallics, 1999, 7: 11 − 21. doi: 10.1016/S0966-9795(98)00004-1
|
[1] | JIAO Guangchen, ZHAN Yong, WEN Jianfeng. Simulation of fatigue crack growth behavior in welded plates considering different material properties of weld and base metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 52-58. DOI: 10.12073/j.hjxb.20221221001 |
[2] | WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001 |
[3] | JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002 |
[4] | DAI Qilei, MENG Lichun, LIANG Zhifang, WU Jianjun, SHI Qingyu. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 9-12,38. |
[5] | TONG Jianhua, ZHANG Kun, LIN Song, WANG Weibing. Comparison of fatigue property of 6082 aluminum alloy joint by friction stir welding and metal inert-gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 105-108. |
[6] | ZHANG Tianhui, GUO Lin, SHI Jie, XUE Bin, XU Renping. Fatigue crack propagation with probability for ADB610 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 79-82. |
[7] | ZHU Xiaogang, WANG Lianfeng, QIAO Fengbin, GUO Lijie. Fatigue failure analysis of 6061-T6 aluminum alloy refilled friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 91-94. |
[8] | TANG Zhenyun, MA Yingjie, MAO Zhiyong, LEI Jiafeng, LIU Yuyin, LI Jinwei. Microstructure and fatigue crack growth behavior of electron beam welded joints for TC4-DT titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 109-112. |
[9] | Gao Jiming, Huang Yuhua, Liu Romgxuan, Chen Jiaquan. Fatigue Crack Growth Rate in Weld Metal of Steel HQ-60 Under High Stress Ratio[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (4): 190-195. |
[10] | Qiu Hai, Li Guangduo. Influence of stress ratio R on threshold value △Kth of fatigue crack propagation for welded joints of 09CuPCrNi steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 24-29. |