Advanced Search
WANG Bo, YANG Fan, LI Lianbo, ZHANG Hongtao, DENG Qingwen. Analysis of weld forming in magnetically controlled Plasma-FCAW underwater hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 74-80. DOI: 10.12073/j.hjxb.20211104005
Citation: WANG Bo, YANG Fan, LI Lianbo, ZHANG Hongtao, DENG Qingwen. Analysis of weld forming in magnetically controlled Plasma-FCAW underwater hybrid welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 74-80. DOI: 10.12073/j.hjxb.20211104005

Analysis of weld forming in magnetically controlled Plasma-FCAW underwater hybrid welding process

More Information
  • Received Date: November 03, 2021
  • Available Online: April 20, 2022
  • Magnetically controlled plasma-FCAW hybrid welding technology is proposed as a new efficient underwater welding method. The advantages of the two independent welding processes are complementary through the unique welding torch structure design. An external magnetic field was designed by regulating the coupling degree between two arcs for the problem of arc repulsion caused by different polarity of power supply in hybrid welding process to solve. The influence of main process parameters on the weld forming and section geometry characteristics of Q355B steel was studied. The results show that the external magnetic field can effectively improve the stability of the hybrid welding process and weld forming. FCAW voltage greatly influences the stability of the underwater hybrid welding process. Plasma welding current and FCAW voltage greatly influence weld penetration, and the plasma current has an approximately linear relationship with weld penetration. Compared with the underwater FCAW process, the welding depth of the hybrid welding process is increased by more than 40%, with higher welding efficiency and welding stability.
  • Han L, Wu X, Chen G, et al. Local dry underwater welding of 304 stainless steel based on a microdrain cover[J]. Journal of Materials Processing Technology, 2019, 268: 47 − 53. doi: 10.1016/j.jmatprotec.2018.12.029
    Barnabas S G, Rajakarunakaran S, Pandian G S, et al. Review on enhancement techniques necessary for the improvement of underwater welding[J]. Materials Today:Proceedings, 2021, 45: 1191 − 1195. doi: 10.1016/j.matpr.2020.03.725
    Chen J, Wen Z, Jia CB, et al. The mechanisms of underwater wet flux-cored arc welding assisted by ultrasonic frequency pulse high-current[J]. Journal of Materials Processing Technology, 2022, 304: 117567. doi: 10.1016/j.jmatprotec.2022.117567
    Xu C S, Guo N, Zhang X, et al. Influence of welding speed on weld pool dynamics and welding quality in underwater wet FCAW[J]. Journal of Manufacturing Processes, 2020, 55: 381 − 388. doi: 10.1016/j.jmapro.2020.03.046
    徐鲁宁, 殷树言, 卢振洋, 等. 提高焊丝熔敷率的试验研究[J]. 焊接, 2001(3): 16 − 18. doi: 10.3969/j.issn.1001-1382.2001.03.006

    Xu Luning, Yin Shuyan, Lu Zhenyang, et al. Study on enhancing wire depoition rates[J]. Welding & Joining, 2001(3): 16 − 18. doi: 10.3969/j.issn.1001-1382.2001.03.006
    Putri E D W S, Surojo E, Budiana E P, et al. Current research and recommended development on fatigue behavior of underwater welded steel[J]. Procedia Structural Integrity, 2020, 27: 54 − 61. doi: 10.1016/j.prostr.2020.07.008
    杜永鹏, 郭宁, 吴程皞, 等. 焊缝余高变异系数在水下湿法焊接质量评估过程中的应用[J]. 焊接学报, 2020, 41(2): 24 − 27. doi: 10.12073/j.hjxb.20190917001

    Du Yongpeng, Guo Ning, Wu Chenghao, et al. Study on the application of the weld reinforcement variation coefficient in underwater wet welding quality evaluation[J]. Transaction of the China Welding Institution, 2020, 41(2): 24 − 27. doi: 10.12073/j.hjxb.20190917001
    Draugeiates R, Bouaifi B, Bartzsch J. Investigations on underwater welding by the plasma Mig method[C]//The Second International Offshore and Polar Engineering Conference. OnePetro, San Francisco, USA, 1992: 199 − 207.
    Zhang H T, Dai XY, Feng J C, et al. Preliminary investigation on real-time induction heating-assisted underwater wet welding[J]. Welding Journal, 2015, 94(1): 8s − 15s.
    王建峰, 孙清洁, 马江坤, 等. 超声振动辅助E40钢水下湿法焊接组织与性能[J]. 焊接学报, 2018, 39(4): 1 − 5. doi: 10.12073/j.hjxb.2018390084

    Wang Jianfeng, Sun Qingjie, Ma Jiangkun, et al. Microstructure and mechanical properties of underwater wet welded joint of E40 ship plate steel subjected to ultrasonic vibration[J]. Transaction of the China Welding Institution, 2018, 39(4): 1 − 5. doi: 10.12073/j.hjxb.2018390084
    Yu J, Wang B, Zhang H T, et al. Characteristics of magnetic field assisting plasma GMAW-P[J]. Welding Journal, 2020, 99(1): 25 − 38. doi: 10.29391/2020.99.003
    陈姬, 宗然, 武传松, 等. TIG-MIG复合焊电弧间相互作用对焊接过程的影响[J]. 机械工程学报, 2016, 52(6): 59 − 64. doi: 10.3901/JME.2016.06.059

    Chen Ji, Zong Ran, Wu Chuansong, et al. Influence of arcs interaction on TIG-MIG hybrid welding process[J]. Journal of Mechanical Engneering, 2016, 52(6): 59 − 64. doi: 10.3901/JME.2016.06.059
  • Related Articles

    [1]WU Xiangyang, SU Hao, SUN Yan, CHEN Ji, WU Chuanong. Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 91-96. DOI: 10.12073/j.hjxb.20200708001
    [2]YU Huiping, FENG Feng, ZHANG Yiliang, ZHAO Erbing. Numerical analysis of elimination stainless steel welding residual stress by over load tension[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 119-123.
    [3]ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106.
    [4]CHEN Ji, WU Chuansong, PITTNER Andreas, RETHEIER Michael. Numerical simulation of fluid flow and temperature fields for double-sided ForceArc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 9-12.
    [5]CHEN Zhanglan, XIONG Yunfeng. Numerical analysis on deformation of welded construction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 77-80.
    [6]YOU Min, LI Zhi, ZHAO Meirong, GUO Bin, YAN Jialing. Numerical analysis on stress distribution in adhesive-welded double lap joint of aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 13-16.
    [7]LEI Yucheng, WANG Jian, ZHU Bin. Numerical analysis on N2-Ar plasma welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 17-20.
    [8]LEI Yong-ping, HAN Feng-juan, Xia Zhi-dong, FENG Ji-cai. Numerical analysis of residual stress in ceramics/metal brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 33-36,41.
    [9]Dong Piming, Gu Fuming, Gao Jinqiang, Wang Erde, Tian Xitang. Numerical Analysis for Effect of Longitudinal Shrinkage of PerpendicularIntersection Weld on Flange Plane[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 132-138.
    [10]Zhao Xihua, Wu Lin, Liu Shubin, He Bing. Numerical analysis on force-amplification mechanism of welding tongs in spot-welding robots[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (1): 35-39.
  • Cited by

    Periodical cited type(2)

    1. 陈先锋,覃世军,汪青峰,曹金,卯鑫,刘鹏,冯星. 偏滤器穿管型结构材料的高温可靠性试验分析. 核聚变与等离子体物理. 2023(03): 283-289 .
    2. 雷玉成,张伟伟,刘丹,李鑫. 氦离子辐照对316L钢焊缝微观结构及性能影响. 焊接学报. 2021(08): 48-53+99-100 . 本站查看

    Other cited types(1)

Catalog

    Article views (498) PDF downloads (54) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return