Advanced Search
LI Zhigang, WEI Chengfa, LIU Dejun, YANG Xiang. Mechanism on dielectric breakdown of arc plasma in high pressure underwater wet welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 49-56. DOI: 10.12073/j.hjxb.20220923001
Citation: LI Zhigang, WEI Chengfa, LIU Dejun, YANG Xiang. Mechanism on dielectric breakdown of arc plasma in high pressure underwater wet welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 49-56. DOI: 10.12073/j.hjxb.20220923001

Mechanism on dielectric breakdown of arc plasma in high pressure underwater wet welding

More Information
  • Received Date: September 22, 2022
  • Available Online: July 03, 2023
  • In order to study the mechanism of arc plasma breakdown in deep water wet welding, a high-pressure underwater wet welding experimental platform was established. Spectral maps of the arc initiation stage at a depth of 40 m were obtained, and a three-dimensional numerical model of arc breakdown discharge at a depth of 40 m was established based on the PIC-MCC method and analyzed. The results of spectral diagnosis arc plasma temperature, electron number density and numerical model analysis were compared, and the rationality and correctness of the model were verified. Based on the main components of the arc plasma obtained from the arc spectroscopy, a study was conducted on the dynamic evolution process of the arc plasma in high-pressure underwater wet welding from the perspective of microscopic particles, and the dynamic distribution, number of particles, temperature and electron number density of the arc plasma were obtained. The results showed that H+, OH+ and O+ were mainly generated by the ionization collision between the electron and the background component water molecule, and the number of OH+ increased fastest, followed by H+, and O+ last, the number of OH+ particles was far greater than the number of H+ and O+ particles; During the collision between electrons and background gas, the energy shifted, and the kinetic energy of electrons moving to the dielectric layer of the electrode decreased, the ionization collision reaction between electrons and the dielectric layer of the electrode weakened until saturation was reached.
  • 叶建雄, 彭星玲, 李兵. 水下湿法焊接研究进展[J]. 电焊机, 2020, 50(9): 111 − 117. doi: 10.7512/j.issn.1001-2303.2020.09.12

    Ye Jianxiong, Peng Xingling, Li Bing. Research development of underwater wet welding[J]. Electric Welding Machine, 2020, 50(9): 111 − 117. doi: 10.7512/j.issn.1001-2303.2020.09.12
    李显东. 不均匀电场下水中微秒脉冲放电过程及机理研究[D]. 武汉: 华中科技大学, 2018.

    Li Xiandong. Study on the process and mechanism of microsecond pulse discharge in water under uneven electric field [D] Wuhan: Huazhong University of Science and Technology, 2018.
    Babaeva N Y, Tereshonok D V, Naidis G V. Initiation of breakdown in bubbles immersed in liquids: pre-existed charges versus bubble size[J]. Journal of Physics D:Applied Physics, 2015, 48(35): 355201. doi: 10.1088/0022-3727/48/35/355201
    Fujita H, Kanazawa S, Ohtanik, et al. Initiation process and propagation mechanism of positive streamer discharge in water[J]. Journal of Applied Physics, 2014, 116(21): 213301. doi: 10.1063/1.4902862
    Fan Ding, Yao Xinglong, Hou Yingjie, et al. The study of arc behavior with different content of copper vapor in GTAW[J]. China Welding, 2022, 31(2): 1 − 14.
    Li X D, He H, Xiao T F, et al. Pre-breakdown processes in water under ultra-long pulses: Bubble-streamer dynamics and their transition[J]. Journal of Physics of Fluids, 2021, 33(10): 107102. doi: 10.1063/5.0065774
    张晓峻, 董婉佳, 孙露, 等. 水的光学特性实验研究[J]. 实验技术与管理, 2014(3): 43 − 45,50. doi: 10.16791/j.cnki.sjg.2014.03.012

    Zhang Xiaojun, Dong Wanjia, Sun Lu, et al. Experimental study on the optical properties of water[J]. Experimental Technology and Management, 2014(3): 43 − 45,50. doi: 10.16791/j.cnki.sjg.2014.03.012
    Martin, Edward A. Experimental investigation of a high-energy density, high-pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255 − 267. doi: 10.1063/1.1735555
    夏炎, 吴昕翀. 局部热力学平衡态电弧等离子体的电导率计算研究[J]. 电气开关, 2020, 58(2): 19 − 23. doi: 10.3969/j.issn.1004-289X.2020.02.006

    Xia Yan, Wu Xinchong. Study on conductivity calculation of arc plasma in local thermodynamic equilibrium[J]. Electrical Switch, 2020, 58(2): 19 − 23. doi: 10.3969/j.issn.1004-289X.2020.02.006
    徐翔. 水下湿法焊接电弧等离子体温度及其组分研究[D]. 南昌: 华东交通大学, 2020.

    Xu Xiang. Research on the temperature and composition of underwater wet welding arc plasma [D]. Nanchang: East China Jiaotong University, 2020.
    Stranathan J D. Dielectric constant of water vapor[J]. Physical Review, 1935, 48(6): 538 − 544. doi: 10.1103/PhysRev.48.538
    李志刚, 祝林, 黄卫, 等. 水下湿法药芯焊丝焊接气泡动态演变与其声脉冲分析[J]. 焊接学报, 2021, 42(4): 36 − 41. doi: 10.12073/j.hjxb.20200517001

    Li Zhigang, Zhu Lin, Huang Wei, et al. Dynamic evolution of bubbles and analysis of acoustic pulses in underwater wet flux cored wire welding[J]. Transactions of the China Welding Institution, 2021, 42(4): 36 − 41. doi: 10.12073/j.hjxb.20200517001
    Zhao B, Chen J, Wu C, et al. Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding[J]. Journal of Manufacturing Processes, 2020, 59: 167 − 185. doi: 10.1016/j.jmapro.2020.09.054
    邢长健. 水下湿法药芯焊丝焊接熔滴过渡过程的数值模拟[D]. 济南: 山东大学, 2019.

    Xing Changjian. Numerical simulation of droplet transfer process in underwater wet flux cored wire welding [D]. Jinan: Shandong University, 2019.
    Pancheshnyi S. 等离子数据交换库[DB/OL]. https://fr.lxcat.net/data/set_type.php, 2020-01-10.
    Dermott E, Cullen J H, Hubbell L K. 光子和电子相互作用数据库[DB/OL]. https://www-nds.iaea.org/epdl97/, 2020-04-03.
    李志刚, 刘德俊, 张世帅, 等. 不同水深下水下湿法焊接电弧引弧温度计算[J]. 光谱学与光谱分析, 2021, 41(5): 1586 − 1592.

    Li Zhigang, Liu Dejun, Zhang Shishuai, et al. Calculation of arc starting temperature of underwater wet welding arc in different water depths[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1586 − 1592.
    王军毅, 施芸城. 大气压下Ar/CF_4纳秒脉冲放电等离子体特性[J]. 东华大学学报(自然科学版), 2021, 47(2): 125 − 130. doi: 10.19886/j.cnki.dhdz.2019.0395

    Wang Junyi, Shi Yuncheng. Characteristics of Ar/CF_4 nanosecond pulsed discharge plasma at atmospheric pressure[J]. Journal of Donghua University (Natural Science Edition), 2021, 47(2): 125 − 130. doi: 10.19886/j.cnki.dhdz.2019.0395
    Venger R, Tmenova T, Valensi F, et al. Detailed investigation of the electric discharge plasma between copper electrodes immersed into water[J]. Atoms, 2017, 5(4): 40 − 53. doi: 10.3390/atoms5040040
    Yang L, Tan X, Wan X, et al. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines[J]. Journal of Applied Physics, 2014, 115(16): 163106. doi: 10.1063/1.4873960
    石里男. 焊接电弧引燃过程的机理分析[D]. 北京: 北京工业大学, 2011.

    Shi Linan. Mechanism analysis of welding arc ignition process [D]. Beijing: Beijing University of Technology, 2011.
  • Related Articles

    [1]LIU Pengyu, LI Hui, ZHANG Ruihua, XIAO Mengzhi, QU Yuebo, WEI Xiaohong, YIN Yan. Research on the properties of Ti6Al4V parts prepared by selective laser melting under different galvanometer accuracy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 52-61. DOI: 10.12073/j.hjxb.20230616003
    [2]YAO Xingzhong, LI Huijun, YANG Zhenwen, WANG Ying. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 12-19. DOI: 10.12073/j.hjxb.20230422001
    [3]Jipeng ZOU, Jian CHEN, Ruisheng HUANG, Pengbo WU, Bin TENG, Hao CAO. Microstructure and mechanical properties of thick Ti6Al4V alloy welded joint by low vacuum laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 54-60. DOI: 10.12073/j.hjxb.20220114002
    [4]LIU Huijie, GAO Yisong, ZHANG Quansheng, ZHAO Huihui. Microstructure and mechanical properties of friction stir welded joint of 2A14-T4 aluminum alloy thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 20-24, 42. DOI: 10.12073/j.hjxb.20210615001
    [5]TAO Yong, WANG Rui, SONG Kuijing, LIU Dashuang, ZHONG Zhihong, WU Yucheng. Interfacial microstructure and mechanical properties of B4C matrix composite joints diffusion bonded with Ti interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 29-35. DOI: 10.12073/j.hjxb.20210802001
    [6]XU Guojian, LIU Jin, CHEN Dongsa, MA Ruixin, SU Yunhai. Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 39-43. DOI: 10.12073/j.hjxb.20191022002
    [7]LIN Panpan, LIN Tiesong, HE Peng, WANG Maochang, YANG Hangao. Microstructure and mechanical property of Al2O3/Ti joint with biocompatibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 16-23. DOI: 10.12073/j.hjxb.2019400175
    [8]FENG Zhenwei, GAO Tengfei, SHAO Tianwei, GUO Wei, ZHU Ying, QU Ping. Brazing of C/C composite and Ni-based high temperature alloy GH3128[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 105-108.
    [9]QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8.
    [10]YANG Yang, CHEN Zhongping, LI Dahe, LIU Xiaohui. Microstructure and mechanical properties of Monel alloy copper explosive clad interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 53-56.
  • Cited by

    Periodical cited type(9)

    1. 胡一杰,孙有平,何江美,李旺珍. 轴肩压入量对2524铝合金FSSW接头组织性能的影响. 兵器材料科学与工程. 2020(01): 52-56 .
    2. 胡一杰,孙有平,何江美,李旺珍. 转速对2524铝合金搅拌摩擦点焊组织与性能的影响. 矿冶工程. 2020(02): 139-143 .
    3. 邱宇,孟强,栾国红,曾元松,李志强,张豪. 喷射成形7055铝合金薄板搅拌摩擦焊研究. 塑性工程学报. 2020(07): 117-122 .
    4. 金玉花,张林,张亮亮,王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能. 材料导报. 2020(20): 20107-20111 .
    5. 金玉花,张林,张亮亮,王希靖. 7050铝合金FSW接头微区低周疲劳裂纹扩展行为. 焊接学报. 2020(10): 11-16+97-98 . 本站查看
    6. 金玉花,吴永武,王希靖,郭廷彪. 滚动轧制对铝合金搅拌摩擦焊接头性能的影响. 焊接学报. 2019(04): 50-54+163 . 本站查看
    7. 霍仁杰,金玉花,王宁,王广山,周彦林. 自然时效对2024铝合金搅拌摩擦焊接头拉伸性能和显微硬度的影响. 热加工工艺. 2019(15): 154-157 .
    8. 李萍,张凯,王薄笑天,薛克敏. 7A60铝合金搅拌摩擦加工组织及性能. 上海交通大学学报. 2019(11): 1381-1388 .
    9. 任思蒙,高崇,李书磊,李超,赵丕植. 焊接速度对厚板5083铝合金搅拌摩擦焊接头组织与性能的影响. 电焊机. 2018(08): 104-108 .

    Other cited types(9)

Catalog

    Article views (211) PDF downloads (63) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return