Advanced Search
LI Yajie, LI Fengfeng, WU Zhisheng, QIN Fengming. Influence of technological parameters on microstructure and mechanical properties of FSW AZ31 magnesium alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 31-37. DOI: 10.12073/j.hjxb.20191210003
Citation: LI Yajie, LI Fengfeng, WU Zhisheng, QIN Fengming. Influence of technological parameters on microstructure and mechanical properties of FSW AZ31 magnesium alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 31-37. DOI: 10.12073/j.hjxb.20191210003

Influence of technological parameters on microstructure and mechanical properties of FSW AZ31 magnesium alloy joints

More Information
  • Received Date: December 09, 2019
  • Available Online: July 26, 2020
  • The effect of technological parameters on the temperature field, microstructure and mechanical properties of AZ31 magnesium alloy was studied by means of numerical simulation and experiments. The results of simulation show that heat generation of the joint increases correspondingly with the increase of rotate speed or the decrease of transverse velocity, and the temperature of the upper part is significantly higher than that in the lower part, which indicates that the heat generation mainly comes from the friction motion of the shoulder, while the stir pin and the plastic deformation of the material only provide a small amount of heat generation. The technological tests show the grain size of the joint decreases and the microstructure homogeneity is improved with the increase of welding speed. With the increase of rotate speed the grain size of the joint increases and the uniformity of the thermo-mechanical affected zone become worse. The rotate speed 1 400 r/min and welding speed 300 mm/min joint obtained best mechanical properties, i.e. elongation and tensile strength are 16.5% and 252 MPa, reaching 75% and 90% of the base material, respectively.
  • Kim D G, Lee K M, Lee J S, et al. Evolution of microstructures and textures in magnesium AZ31 alloys deformed by normal and cross-roll rolling[J]. Materials Letters, 2012, 75: 122 − 125. doi: 10.1016/j.matlet.2012.01.141
    Pollock T M. Weight loss with magnesium alloys[J]. Science, 2010, 328(5981): 986 − 987. doi: 10.1126/science.1182848
    Yasi J A, Jr L G H, Trinkle D R. Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data[J]. Acta Materialia, 2011, 59(14): 5652 − 5660. doi: 10.1016/j.actamat.2011.05.040
    Commin L, Dumont M, Masse J E, et al. Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters[J]. Acta Materialia, 2009, 57(2): 326 − 334. doi: 10.1016/j.actamat.2008.09.011
    Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R, 2005, 50: 1 − 78. doi: 10.1016/j.mser.2005.07.001
    刘会杰, 李金全, 段卫军. 静止轴肩搅拌摩擦焊的研究进展[J]. 焊接学报, 2012, 33(5): 108 − 112.

    Liu Huijie, Li Jinquan, Duan Weijun. Progress in the stationay shoulder friction stir welding[J]. Transactions of the China Welding Institution, 2012, 33(5): 108 − 112.
    Chalmers R E. The friction welding advantage[J]. Manufacturing Engineering, 2001, 126(5): 64 − 68.
    温林秀, 赵运强, 董春林, 等. 1561铝合金搅拌摩擦焊接过程压力特征及接头组织性能分析[J]. 焊接学报, 2019, 40(12): 91 − 96.

    Wen Linxiu, Zhao Yunqiang, Dong Chunlin, et al. Analysis of pressure characteristics and microstructure of joint during friction stir welding process of 1561 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(12): 91 − 96.
    Liu J L, Zhu H, Jiang Y, et al. Evolution of residual stress field in 6N01 aluminum alloy friction stir welding joint[J]. China Welding, 2018, 27(4): 18 − 26.
    Razal Rose A, Manisekar K, Balasubramanian V. Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 974 − 984. doi: 10.1016/S1003-6326(11)60809-1
    Sato Y S, Kokawa H. Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum[J]. Metallurgical and Materials Transactions A, 2000, 32: 3023 − 3031.
    Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy[J]. Acta Materialia, 2007, 55(3): 897 − 905. doi: 10.1016/j.actamat.2006.09.010
    Yoo M H, Lee J K. Deformation twinning in h.c.p. metals and alloys[J]. Philosophical Magazine A, 1991, 63(5): 987 − 1000. doi: 10.1080/01418619108213931
    Kaibyshev R O, Sitdikov O S. On the role of twinning in dynamic recrystallization[J]. Physics of Metals & Metallography, 2000, 89(4): 384 − 390.
    赵熠朋, 朱浩, 姜月, 等. 7075铝合金搅拌摩擦焊接头断裂机理[J]. 焊接学报, 2017, 38(11): 77 − 81. doi: 10.12073/j.hjxb.20160105005

    Zhao Yipeng, Zhu Hao, Jiang Yue, et al. Fracture mechanism of friction stir welded joint of 7075 aluminum alloy[J]. Transactions of the China Welding Institution, 2017, 38(11): 77 − 81. doi: 10.12073/j.hjxb.20160105005
  • Related Articles

    [1]ZHU Ming, ZHANG Hao, SHI Kun, HOU Xiaofei, SHI Yu. Analysis of surface roughness of fluorocarbon aluminum powder coating during laser cleaning and its influence on laser absorption[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 43-53. DOI: 10.12073/j.hjxb.20230331002
    [2]ZHOU Wenting, SI Yupeng, HE Hongzhou, WANG Rongjie. Design of reflow oven furnace temperature based on quantum multi-objective optimization algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 85-91. DOI: 10.12073/j.hjxb.20210508001
    [4]YANG Tuoyu, MENG Gongge, CHEN Feng, XIA Xianming. Effects of surface absorption of Ge on Sn2.5Ag0.7Cu/Cu interfacial reaction and wettability[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 85-88.
    [5]WANG He, WANG Wei, ZHU Chengyu, WANG Xuyou, LIN Shangyang. Absorption of GMAW pulse arc to Nd:YAG laser power[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 61-64.
    [6]GUO Chunhuan, CHI Zhidong, FU Xueman, LIU Ruitang. Difference of impact absorbed energy between butt weld metal and deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 99-102.
    [7]SHEN Jie, JIN Xian-long, GUO Yi-zhi. Numerical simulation on vibration in ultrasonic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 13-16.
    [8]ZHANG Yi, LI Li-jun, CHENG Gen-yu, ZHANG gang. Fresnel absorption in keyhole in deep penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 121-124,128.
    [9]ZHANG De-fen, CHEN Xiao-wen, SONG Tian-min, ZHANG Guo-fu, ZUO Liang. Study of mechanical vibration welding on impact energy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 85-87.
    [10]CHEN Yan bin, LI Li qun, WU Lin. Quantitative measurement of absorption and defocusing of laser beam by electric arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 56-58.

Catalog

    Article views (543) PDF downloads (39) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return