Citation: | ZHANG Guiqing, REN Yinglei, SU Yunhai. Microstructure and mechanical properties of magnesium alloy welded joint under the combined effect of magnetic field and NiCl2 activated flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 48-54. DOI: 10.12073/j.hjxb.20200313001 |
Zhao X H, Zhang Y J, Liu Y. Surface characteristics and fatigue behavior of gradient nano-structured magnesium alloy[J]. Metals, 2017, 7(2): 62 − 73. doi: 10.3390/met7020062
|
Chang W, Shen Y P, Su Y Y, et al. Grain refinement of AZ91 magnesium alloy induced by Al-V-B master alloy[J]. Metals, 2019, 7: 1333 − 1344.
|
Karakulak E. A review: past, present and future of grain refining of magnesium castings[J]. Journal of Magnesium and Alloys, 2019, 7: 355 − 369. doi: 10.1016/j.jma.2019.05.001
|
Zhang D T, Mayumi S, Kouichi M. Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding[J]. Scripta Materialia, 2005, 52: 899 − 903. doi: 10.1016/j.scriptamat.2005.01.003
|
Liu H T, Zhou J X, Zhao D Q, et al. Characteristics of AZ31 Mg alloy joint using automatic TIG welding[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(1): 102 − 108. doi: 10.1007/s12613-017-1383-8
|
Munitz A, Cotler C. Electron beam welding of magnesium AZ91D plates[J]. Welding Journal, 2000, 79(7): 202 − 208.
|
Zhao X Y, Tan C W, Meng S H, et al. Fiber laser welding-brazing characteristics of dissimilar metals AZ31B Mg alloys to copper with Mg-based filler[J]. Journal of Materials Engineering and Performance, 2018, 27: 1427 − 1439. doi: 10.1007/s11665-018-3166-4
|
Sevvel P, Jaiganesh V. Impact of process parameters during friction stir welding of AZ80A Mg alloy[J]. Science & Technology of Welding & Joining, 2016, 21: 83 − 90.
|
胡耀波, 赵冲, 邓娟. 镁合金焊接技术的研究现状与展望[J]. 热加工工艺, 2010, 39(13): 124 − 128. doi: 10.3969/j.issn.1001-3814.2010.13.041
Hu Yaobo, Zhao Chong, Deng Juan. Research status and prospects of magnesium alloys welding technology[J]. Hot Working Technology, 2010, 39(13): 124 − 128. doi: 10.3969/j.issn.1001-3814.2010.13.041
|
彭小洋, 凌泽民, 廖娟, 等. 活性TIG焊的研究进展[J]. 机械工程材料, 2013, 37(8): 1 − 4.
Peng Xiaoyang, Ling Zemin, Liao Juan, et al. Research progress of A-TIG welding[J]. Materials for Mechanical Engineering, 2013, 37(8): 1 − 4.
|
张勇, 孙琳琳, 唐家成, 等. 高硅粉煤灰活性剂对Q235钢液态金属表面张力及TIG焊缝的影响[J]. 焊接学报, 2018, 39(5): 92 − 96. doi: 10.12073/j.hjxb.2018390130
Zhang Yong, Sun Linlin, Tang Jiacheng, et al. Effect on liquid metal surface tension and TIG weld bead properties of Q235 steel by high silicon flyash[J]. Transactions of the China Welding Institution, 2018, 39(5): 92 − 96. doi: 10.12073/j.hjxb.2018390130
|
张兆栋, 曹全金. 金属单质活性剂对镁合金A-TIG焊的影响[J]. 焊接学报, 2011, 32(9): 37 − 40.
Zhang Zhaodong, Cao Quanjin. Effects of metal activating fluxes on A-TIG welding of magnesium alloy[J]. Transactions of the China Welding Institution, 2011, 32(9): 37 − 40.
|
高晓刚, 董俊慧, 韩旭, 等. 氟化物A-TIG焊接Ti6Al4V的电弧行为[J]. 焊接学报, 2017, 38(10): 6 − 10. doi: 10.12073/j.hjxb.20161026007
Gao Xiaogang, Dong Junhui, Han Xu, et al. Arc behavior of fluoride effects in the A-TIG welding of Ti6Al4V[J]. Transactions of the China Welding Institution, 2017, 38(10): 6 − 10. doi: 10.12073/j.hjxb.20161026007
|
Qin B, Ying F C, Zeng C Z, et al. Microstructure and mechanical properties of TIG/A-TIG welded AZ61/ZK60 magnesium alloy joints[J]. Transactions of Nonferrous Metals Society, 2019, 29: 1864 − 1872. doi: 10.1016/S1003-6326(19)65094-6
|
Demchenko V L, Yurhenko M V. Structure and properties of the welded joints of single-type polyethylenes formed under the action of constant magnetic fields[J]. Materials Science, 2017, 53(2): 186 − 193. doi: 10.1007/s11003-017-0061-3
|
Hu S P, Chen L P, Zhou Q, et al. Effects of compound magnetic field of pulsed and alternate field on solidified structure and mechanical properties of AZ31 magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2018, 38: 303 − 308.
|
苏允海, 温小波, 刘铎, 等. 磁场电流对镁合金焊接接头疲劳性能的影响[J]. 焊接学报, 2011, 32(4): 79 − 82.
Su Yunhai, Wen Xiaobo, Liu Duo, et al. Effect of magnetic field current on fatigue properties of magnesium alloy welded joint[J]. Transactions of the China Welding Institution, 2011, 32(4): 79 − 82.
|
苏允海, 蒋焕文, 秦昊, 等. 磁场作用下镁合金焊接接头力学性能的变化[J]. 焊接学报, 2013, 34(3): 85 − 88.
Su Yunhai, Jiang Huanwen, Qin Hao, et al. Forming charactreistics, microstructure and properties of mangnesium alloy during TIG welding under magnetic field[J]. Transactions of the China Welding Institution, 2013, 34(3): 85 − 88.
|
罗键, 贾涛, 殷咸青, 等. GTAW外加间歇交变纵向磁场的数值计算及其对焊接行为的影响[J]. 金属学报, 1993, 35(3): 330 − 333.
Luo Jian, Jia Tao, Yin Xianqing, et al. Numerical calculation and influence of the external intermittent and alternative longitudinal magnetic field in stainless steel GTA welding[J]. Acta Metallurgica Sinica, 1993, 35(3): 330 − 333.
|
Marya M, Edwards G R. Chloride contribution in flux assisted GTA welding of magnesium alloys[J]. Welding Journal, 2002(12): 291 − 298.
|
李宇航. 纵向磁场作用下镁合金焊接电弧与熔池的传热及流动特性的研究[D]. 沈阳: 沈阳工业大学, 2018.
Li Yuhang. The heat transfer and fluid flow characteristics of welding arc and weld pool for magnesium alloy under applied longitudinal magnetic field[D]. Shenyang: Shenyang University of Technology, 2018.
|
[1] | HAN Xiaohui, LI Shuaizhen, WU Laijun, TAN Caiwang, LI Gangqing, SONG Xiaoguo. Effects of surface layer microstructure on liquation crack and fatigue properties of 6005A aluminum alloy MIG joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 14-20. DOI: 10.12073/j.hjxb.20210825004 |
[2] | WANG Lei, FU Qiang, AN Jinlan, ZHOU Song. Multi-zone fatigue crack growth behavior of friction stir welding of 2A12-T4 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 24-29. DOI: 10.12073/j.hjxb.20200724001 |
[3] | JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Fatigue crack growth behavior of 7050 aluminum alloy friction stir welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 11-16. DOI: 10.12073/j.hjxb.20200709002 |
[4] | JI Hua, DENG Yunlai, DENG Jianfeng, XU Hongyong, LIN Sen. Effect of welding speed on mechanical properties of bobbin tool friction stir welded 6005A-T6 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 24-29. DOI: 10.12073/j.hjxb.2019400122 |
[5] | JI Kai, ZHANG Jing, XU Yusong. Fatigue properties of welded joints of New 6005A alloy with high copper content[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 95-98. |
[6] | DAI Qilei, MENG Lichun, LIANG Zhifang, WU Jianjun, SHI Qingyu. Comparison of fatigue crack propagation behavior of friction stir welded and metal inert-gas welded A6N01 joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 9-12,38. |
[7] | LÜ Xiaochun, LEI Zhen, ZHANG Jian, ZHANG Lihua. Study on the softening of 6005A-T6 aluminum alloy welding joints for high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 25-29. |
[8] | ZHU Xiaogang, WANG Lianfeng, QIAO Fengbin, GUO Lijie. Fatigue failure analysis of 6061-T6 aluminum alloy refilled friction stir spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 91-94. |
[9] | ZHANG Jian, LEI Zhen, WANG Xuyou. Weld hot crack analysis of 6005A aluminum alloy profile for high-speed train[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 60-64. |
[10] | WANG Xijing, LI Shuwei, NIU Yong, Zhang Jie. Fatigue crack growth rate of A7075 FSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 5-7. |
1. |
刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
![]() | |
2. |
税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
![]() | |
3. |
刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
![]() | |
4. |
代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 .
![]() | |
5. |
王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
![]() | |
6. |
甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
![]() | |
7. |
陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
![]() | |
8. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
9. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
10. |
张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 .
![]() |