Advanced Search
ZHANG Guiqing, REN Yinglei, SU Yunhai. Microstructure and mechanical properties of magnesium alloy welded joint under the combined effect of magnetic field and NiCl2 activated flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 48-54. DOI: 10.12073/j.hjxb.20200313001
Citation: ZHANG Guiqing, REN Yinglei, SU Yunhai. Microstructure and mechanical properties of magnesium alloy welded joint under the combined effect of magnetic field and NiCl2 activated flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 48-54. DOI: 10.12073/j.hjxb.20200313001

Microstructure and mechanical properties of magnesium alloy welded joint under the combined effect of magnetic field and NiCl2 activated flux

More Information
  • Received Date: March 12, 2020
  • Available Online: November 17, 2020
  • In order to analyze the evolution of microstructure and mechanical properties of magnesium alloy welded joints under the combined effect of magnetic field and activated flux, longitudinal AC magnetic field was used during A-TIG welding of AZ91 magnesium alloy. The formability, microstructure, phase composition and mechanical properties of welded joints with different coating amounts of activated flux were analyzed, the arc shape and crystallization nucleation characteristics under the combined action of magnetic field and activated flux were discussed. The experimental results show that the introduction of magnetic field has a negative effect on increasing penetration and improving welding efficiency, but it has a very obvious effect on improving the mechanical properties of welded joints. When the coating amount of activated flux is 3 mg/cm2 under the selected magnetic field parameters, the forming state and microstructure performance of welded joints reach the best match. In this condition, the forming coefficient is 2.38, and the tensile strength and elongation of welded joints are 338 MPa and 13.3%, respectively. Under the combined action of magnetic field and activted flux, the arc moves downward spirally, and drives the molten pool to change the crystal crystallization conditions, promotes the formation of small equiaxed crystals and the appearance of twins, so that the mechanical properties of welded joints are improved. At the same time, the introduction of magnetic field can change the growth mode of the crystal, and the preferential growth phenomenon appears along the (0001) crystal plane.
  • Zhao X H, Zhang Y J, Liu Y. Surface characteristics and fatigue behavior of gradient nano-structured magnesium alloy[J]. Metals, 2017, 7(2): 62 − 73. doi: 10.3390/met7020062
    Chang W, Shen Y P, Su Y Y, et al. Grain refinement of AZ91 magnesium alloy induced by Al-V-B master alloy[J]. Metals, 2019, 7: 1333 − 1344.
    Karakulak E. A review: past, present and future of grain refining of magnesium castings[J]. Journal of Magnesium and Alloys, 2019, 7: 355 − 369. doi: 10.1016/j.jma.2019.05.001
    Zhang D T, Mayumi S, Kouichi M. Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding[J]. Scripta Materialia, 2005, 52: 899 − 903. doi: 10.1016/j.scriptamat.2005.01.003
    Liu H T, Zhou J X, Zhao D Q, et al. Characteristics of AZ31 Mg alloy joint using automatic TIG welding[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(1): 102 − 108. doi: 10.1007/s12613-017-1383-8
    Munitz A, Cotler C. Electron beam welding of magnesium AZ91D plates[J]. Welding Journal, 2000, 79(7): 202 − 208.
    Zhao X Y, Tan C W, Meng S H, et al. Fiber laser welding-brazing characteristics of dissimilar metals AZ31B Mg alloys to copper with Mg-based filler[J]. Journal of Materials Engineering and Performance, 2018, 27: 1427 − 1439. doi: 10.1007/s11665-018-3166-4
    Sevvel P, Jaiganesh V. Impact of process parameters during friction stir welding of AZ80A Mg alloy[J]. Science & Technology of Welding & Joining, 2016, 21: 83 − 90.
    胡耀波, 赵冲, 邓娟. 镁合金焊接技术的研究现状与展望[J]. 热加工工艺, 2010, 39(13): 124 − 128. doi: 10.3969/j.issn.1001-3814.2010.13.041

    Hu Yaobo, Zhao Chong, Deng Juan. Research status and prospects of magnesium alloys welding technology[J]. Hot Working Technology, 2010, 39(13): 124 − 128. doi: 10.3969/j.issn.1001-3814.2010.13.041
    彭小洋, 凌泽民, 廖娟, 等. 活性TIG焊的研究进展[J]. 机械工程材料, 2013, 37(8): 1 − 4.

    Peng Xiaoyang, Ling Zemin, Liao Juan, et al. Research progress of A-TIG welding[J]. Materials for Mechanical Engineering, 2013, 37(8): 1 − 4.
    张勇, 孙琳琳, 唐家成, 等. 高硅粉煤灰活性剂对Q235钢液态金属表面张力及TIG焊缝的影响[J]. 焊接学报, 2018, 39(5): 92 − 96. doi: 10.12073/j.hjxb.2018390130

    Zhang Yong, Sun Linlin, Tang Jiacheng, et al. Effect on liquid metal surface tension and TIG weld bead properties of Q235 steel by high silicon flyash[J]. Transactions of the China Welding Institution, 2018, 39(5): 92 − 96. doi: 10.12073/j.hjxb.2018390130
    张兆栋, 曹全金. 金属单质活性剂对镁合金A-TIG焊的影响[J]. 焊接学报, 2011, 32(9): 37 − 40.

    Zhang Zhaodong, Cao Quanjin. Effects of metal activating fluxes on A-TIG welding of magnesium alloy[J]. Transactions of the China Welding Institution, 2011, 32(9): 37 − 40.
    高晓刚, 董俊慧, 韩旭, 等. 氟化物A-TIG焊接Ti6Al4V的电弧行为[J]. 焊接学报, 2017, 38(10): 6 − 10. doi: 10.12073/j.hjxb.20161026007

    Gao Xiaogang, Dong Junhui, Han Xu, et al. Arc behavior of fluoride effects in the A-TIG welding of Ti6Al4V[J]. Transactions of the China Welding Institution, 2017, 38(10): 6 − 10. doi: 10.12073/j.hjxb.20161026007
    Qin B, Ying F C, Zeng C Z, et al. Microstructure and mechanical properties of TIG/A-TIG welded AZ61/ZK60 magnesium alloy joints[J]. Transactions of Nonferrous Metals Society, 2019, 29: 1864 − 1872. doi: 10.1016/S1003-6326(19)65094-6
    Demchenko V L, Yurhenko M V. Structure and properties of the welded joints of single-type polyethylenes formed under the action of constant magnetic fields[J]. Materials Science, 2017, 53(2): 186 − 193. doi: 10.1007/s11003-017-0061-3
    Hu S P, Chen L P, Zhou Q, et al. Effects of compound magnetic field of pulsed and alternate field on solidified structure and mechanical properties of AZ31 magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2018, 38: 303 − 308.
    苏允海, 温小波, 刘铎, 等. 磁场电流对镁合金焊接接头疲劳性能的影响[J]. 焊接学报, 2011, 32(4): 79 − 82.

    Su Yunhai, Wen Xiaobo, Liu Duo, et al. Effect of magnetic field current on fatigue properties of magnesium alloy welded joint[J]. Transactions of the China Welding Institution, 2011, 32(4): 79 − 82.
    苏允海, 蒋焕文, 秦昊, 等. 磁场作用下镁合金焊接接头力学性能的变化[J]. 焊接学报, 2013, 34(3): 85 − 88.

    Su Yunhai, Jiang Huanwen, Qin Hao, et al. Forming charactreistics, microstructure and properties of mangnesium alloy during TIG welding under magnetic field[J]. Transactions of the China Welding Institution, 2013, 34(3): 85 − 88.
    罗键, 贾涛, 殷咸青, 等. GTAW外加间歇交变纵向磁场的数值计算及其对焊接行为的影响[J]. 金属学报, 1993, 35(3): 330 − 333.

    Luo Jian, Jia Tao, Yin Xianqing, et al. Numerical calculation and influence of the external intermittent and alternative longitudinal magnetic field in stainless steel GTA welding[J]. Acta Metallurgica Sinica, 1993, 35(3): 330 − 333.
    Marya M, Edwards G R. Chloride contribution in flux assisted GTA welding of magnesium alloys[J]. Welding Journal, 2002(12): 291 − 298.
    李宇航. 纵向磁场作用下镁合金焊接电弧与熔池的传热及流动特性的研究[D]. 沈阳: 沈阳工业大学, 2018.

    Li Yuhang. The heat transfer and fluid flow characteristics of welding arc and weld pool for magnesium alloy under applied longitudinal magnetic field[D]. Shenyang: Shenyang University of Technology, 2018.
  • Related Articles

    [1]TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002
    [2]WANG Leilei, ZHANG Zhanhui, XU Dewei, XUE Jiaxiang, ZENG Min. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 137-140. DOI: 10.12073/j.hjxb.2019400114
    [3]LI Ping, LI Hanlin, WEN Weishu, XUE Kemin. Mechanical properties of vacuum diffusion welded joints of low activation martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 21-24. DOI: 10.12073/j.hjxb.2019400065
    [4]ZHANG Qinlian, LIN Sanbao, FAN Chenglei, YANG Chunli. Microstructure and mechanical behaviors of stainless steel weld metal by ultrasonic assisted pulse TIG welding technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 61-64.
    [5]WU Wei, CHENG Guangfu, GAO Hongming, WU Lin. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 81-84.
    [6]WANG Zhicheng, QIAO Jisen, CHEN Jianhong, ZHU Liang. Investigation on the local mechanical properties of the automobile aluminium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 21-24.
    [7]SONG Jianling, LIN Sanbao, YANG Chunli, FAN Chenglei. Microstructure and mechanical properties of TIG brazing of stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 105-108.
    [8]ZHANG Yanfei, DONG Junhui, ZHANG Yongzhi. Prediction mechanical properties of welded joints based on ANFIS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 5-8.
    [9]ZHOU Fang-ming, QIAN Yi-yu, ZHANG Jing, LI GUI-peng. Grain refinement mechanism of gas tungsten arc welded joint of tantalum thin walled tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 41-44,48.
    [10]LEI Yi, LI Hai, LIU Zhi Yi. Super-fine grain refining and mechanical properties of 20Mn2 Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 17-20.

Catalog

    Article views (371) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return