Advanced Search
WEN Xue, WANG Honghui, LI Xiyan, QIAN Jiankang, BI Siyuan, LEI Zhenglong. The difference of CTOD of X80M pipeline steel fully automatic welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 98-104. DOI: 10.12073/j.hjxb.20230313001
Citation: WEN Xue, WANG Honghui, LI Xiyan, QIAN Jiankang, BI Siyuan, LEI Zhenglong. The difference of CTOD of X80M pipeline steel fully automatic welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 98-104. DOI: 10.12073/j.hjxb.20230313001

The difference of CTOD of X80M pipeline steel fully automatic welded joints

More Information
  • Received Date: March 12, 2023
  • Available Online: January 30, 2024
  • Aiming at the fully automatic welded joints of X80M steel pipe under different preheating conditions, the difference of crack tip opening displacement is studied. The CTOD test is carried out on single notch three-point bending specimen, and CTOD value is calculated according to the formula recommended in GB/T21143-2014 and ISO15653-2018. The results show that: Compared with GB/T21143-2014, the results of CTOD calculated by formula recommended by ISO 15653-2018 are 35% higher on average. This difference is mainly due to the difference in the emphasis of the correction methods of the two standards, that is, the GB standard corrects the change of crack length, while the ISO standard adjusts for temperature effects. The CTOD value of the joint sample under the preheating condition of 80 ℃ is low on the whole. According to GB/T21143-2014, three samples are lower than the standard, the lowest is 0.16 mm, and according to ISO 15653-2018, one sample is lower than the standard, the lowest is 0.20 mm. Under the preheating condition of 120 ℃, the calculated CTOD values of all samples under the two standards meet the standard requirements, and the fracture toughness of welded joints is better. Under the same preheating conditions, the CTOD values of the fusion zone are higher than that of the weld zone, and the maximum value of CTOD values appearing in the fusion zone, which has good fracture toughness. However, the CTOD value of the fusion zone is affected by the inhomogeneity of the structure, resulting in great differences between different positions and uneven performance distribution.

  • [1]
    李泽宇, 徐连勇, 郝康达, 等. MAG和激光扫描-电弧复合焊X80钢接头组织和性能[J]. 焊接学报, 2022, 43(5): 36 − 42.

    Li Zeyu, Xu Lianyong, Hao Kangda, et al. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. Transactions of the China Welding Institution, 2022, 43(5): 36 − 42.
    [2]
    王楠, 陈永楠, 赵秦阳, 等. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299 − 1310.

    Wang Nan, Chen Yongnan, Zhao Qinyang, et al. Effect of strain rate on the strain partitioning behavior of ferrite/bainite in X80 pipeline steel[J]. Acta Metallurgica Sinica, 2023, 59(10): 1299 − 1310.
    [3]
    张继明. X80针状铁素体管线管的超高周疲劳行为[J]. 材料热处理学报, 2020, 41(4): 144 − 150.

    Zhang Jiming. Very high cycle fatigue behavior of X80 acicular ferrite line pipe[J]. Transactions of Materials and Heat Treatment, 2020, 41(4): 144 − 150.
    [4]
    文学, 钱建康, 汪宏辉, 等. 装配条件对X80钢外根焊接头成分与性能的影响[J]. 焊接, 2022(5): 24 − 28.

    Wen Xue, Qian Jiankang, Wang Honghui, et al. Effect of assembly conditions on composition and mechanical properties of X80 steel outer root welded joints[J]. Welding & Joining, 2022(5): 24 − 28.
    [5]
    Kasuya T, Yurioka N. Determination of necessary preheat temper-ature to avoid cold cracking under varying ambienttemperature[J]. ISIJ International, 1995, 35(10): 1183 − 1189. doi: 10.2355/isijinternational.35.1183
    [6]
    张勇, 孙琳琳, 綦秀玲. 曲面冲击头随焊冲击旋转挤压法控制40Cr钢冷裂纹[J]. 中国机械工程, 2017, 28(9): 1097 − 1100.

    Zhang Yong, Sun Linlin, Qi xiulin. Research on preventing weld cold crack of 40Cr by impact revolution curved rod[J]. China Mechanical Engineering, 2017, 28(9): 1097 − 1100.
    [7]
    李亚娟, 贾鹏, 李午申, 等. X80管线钢焊接冷裂敏感性判据的建立[J]. 焊接学报, 2012, 33(4): 85 − 88.

    Li Yajuan, Jia Peng, Li Wushen, et al. Establishment of cold cracking susceptibility criterion for X80 pipeline steel[J]. Transactions of the China Welding Institution, 2012, 33(4): 85 − 88.
    [8]
    汪宏辉, 董淑磊, 钱建康, 等. 预热及保温对严寒环境X80钢管道全自动外焊焊缝组织与性能的影响[J]. 中国机械工程, 2021, 32(6): 748 − 755.

    Wang Honghui, Dong Shulei, Qian Jiankang, et al. Effects of pre-heating and heat preservation on microstructure and properties of fully automatic external welding seams of X80 steel pipes in severe cold environment[J]. China Mechanical Engineering, 2021, 32(6): 748 − 755.
    [9]
    Turichin G A, Kuznetsov M, Pozdnyako V A, et al. Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel[J]. Procedia CIRP, 2018, 74: 748 − 751. doi: 10.1016/j.procir.2018.08.018
    [10]
    董现春, 刘新垚, 张大伟, 等. 双相车轮钢脉动预热闪光对焊接头开裂分析及工艺改进[J]. 焊接, 2021(5): 41 − 46.

    Dong Xianchun, Liu Xinyao, Zhang Dawei, et al. Cracking analysis and process improvement of pulse preheating flash butt welded joint of dual phase wheel steel[J]. Welding & Joining, 2021(5): 41 − 46.
    [11]
    熊俊珍, 杨新岐, 唐文珅, 等. 焊后热处理对X52管线钢水下摩擦塞焊接头断裂韧性的影响[J]. 焊接, 2021(4): 1 − 7.

    Xiong Junzhen, Yang Xinqi, Tang Wenshen, et al. Effects of post-weld heat treatment on fracture toughness of underwater wet friction taper plug welded joints for X52 pipeline steel[J]. Welding & Joining, 2021(4): 1 − 7.
    [12]
    卢俊文, 湛立宁, 丁玉松, 等. 低温压力容器用钢07MnNiMoDR焊接工艺研究[J]. 化工设备与管道, 2022, 59(5): 17 − 22.

    Lu Junwen, Zhan Lining, Ding yusong, et al. Research of welding procedure for steel 07MnNiMoDR used for low temperature pressure vessel[J]. Process Equipment & Piping, 2022, 59(5): 17 − 22.
    [13]
    王磊, 宋高峰, 苏党红, 等. 环焊缝热影响区断裂韧性分布规律及统计处理方法[J]. 焊接学报, 2023, 44(6): 27 − 34. doi: 10.12073/j.hjxb.20220712001

    Wang Lei, Song Gaofeng, Su Danghong, et al. Fracture toughness distribution law and statistical treatment of heat-affected zone of circumferential welds[J]. Transactions of the China Welding Institution, 2023, 44(6): 27 − 34. doi: 10.12073/j.hjxb.20220712001
    [14]
    鞠晓臣, 赵欣欣, 张佳丹, 等. 基于CTOD特征值的桥梁钢防脆断评价方法研究[J]. 桥梁建设, 2022, 52(2): 47 − 52.

    Ju Xiaochen, Zhao Xinxin, Zhang Jiadan, et al. Research on methods to evaluate brittle fracture resistance of bridge steel based on CTOD characteristic value[J]. Bridge Construction, 2022, 52(2): 47 − 52.
    [15]
    张宏, 吴锴, 冯庆善, 等. 高钢级管道环焊接头力学性能与适用性评价研究进展[J]. 油气储运, 2022, 41(5): 481 − 497.

    Zhang Hong, Wu Kai, Feng Qingshan, et al. State of the art on mechanical properties and fitness-for-service assessment of high-grade pipeline girth weld[J]. Oil & Gas Storage and Transportation, 2022, 41(5): 481 − 497.
    [16]
    刘冬, 杜丽影, 李荣锋. 国家标准GB/T21143中CTOD计算公式转动修正方法探讨[J]. 武汉工程职业技术学院学报, 2016, 28(4): 5 − 8.

    Liu Dong, Du Liying, Li Rongfeng, et al. Study on rotation correction methods of CTOD calculation formula recommended by GB/T 21143[J]. Journal of Wuhan Engineering Institute, 2016, 28(4): 5 − 8.
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料准静态断裂韧度的统一试验方法: GB/T 21143—2014[S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Metallic materials-unified method of test for determination of quasistatic fracture toughness: GB/T 21143-2014[S]. Beijing: Standards Press of China, 2015.
    [18]
    BSI. Metallic materials-method of test for the determination of quasistatic fracture toughness of welds: BS EN ISO 15653: 2018[S]. London: BSI Standard Limited 2018, 2018: 21-44.
  • Related Articles

    [1]WANG Hongyu, HUANG Jinlei, CHEN Sheng, ZHU Jian, MAO Jizhou. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 111-119. DOI: 10.12073/j.hjxb.20220519002
    [2]LI Yongqiang, Zhao He, Zhao Xihua, Jiang Wenhu, Zhang Weihua. Numerical simulation of RSW temperature field during aluminum alloys LB-RSW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 29-32.
    [3]XU Peiquan, ZHAO Xiaohui, HE Jianping, XU Guoxiang, YU Zhishui. Simulation on temperature field for Invar alloy during TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 37-40.
    [4]MA Lin, YUAN Jinping, ZHANG Ping, ZHAO Junjun. Finite numerical simulation of temperature field in multi-pass laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 109-112.
    [5]HU Jun-feng, YANG Jian-guo, FANG Hong-yuan, LI Guang-min, CHEN Wei. Temperature field of arc gouging and its influence on microstructures[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 93-96.
    [6]HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108.
    [7]DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100.
    [8]XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82.
    [9]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
    [10]Xu Qinghong, Guo Wei, Tian Xitang, Li Zhi. Numerical Simulation and Experiment of Temperature Field of Laser Cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (2): 58-62.
  • Cited by

    Periodical cited type(1)

    1. 王晨,雷正龙,宋文清,杨烁,李旭东. CoCrW与T800焊丝对DZ125高温合金表面激光熔覆耐磨层组织及性能的影响. 中国激光. 2025(04): 101-109 .

    Other cited types(3)

Catalog

    Article views (93) PDF downloads (17) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return